Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Miranda, Luís Henrique de | - |
Autor(es): dc.creator | Oliveira, Jadde Thaine dos Santos | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:22:51Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:22:51Z | - |
Data de envio: dc.date.issued | 2024-08-06 | - |
Data de envio: dc.date.issued | 2024-08-06 | - |
Data de envio: dc.date.issued | 2024-08-06 | - |
Data de envio: dc.date.issued | 2024-02-19 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/49596 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/906974 | - |
Descrição: dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2024. | - |
Descrição: dc.description | Neste trabalho, investigamos a existência e regularidade de solução para uma equação elíptica semilinear com não linearidade singular, seguindo os estudos de Lucio Boccardo e Luigi Orsina em [3]. Tal problema é dado por: −div(M(x)∇u) = f(x) u γ , em Ω u > 0, em Ω u = 0, em ∂Ω onde Ω é um subconjunto de R N limitado de classe C 1 , N ≥ 2, f : Ω −→ R é uma função pertencente a algum Espaço de Lebesgue, γ > 0 e M é uma matriz elíptica limitada. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF). | - |
Descrição: dc.description | In this work, we investigate the existence and regularity of solutions for a semilinear elliptic equation with singular nonlinearity, following the studies of Lucio Boccardo and Luigi Orsina in [3]. This problem is given by: −div(M(x)∇u) = f(x) u γ , in Ω u > 0, in Ω u = 0, on ∂Ω where Ω is a bounded subset of R N of class C 1 , N ≥ 2, f : Ω −→ R is a function belonging to some Lebesgue Space, γ > 0 and M is a bounded elliptic matrix. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Equações diferenciais elípticas | - |
Palavras-chave: dc.subject | Regularidade | - |
Palavras-chave: dc.subject | Singularidade | - |
Título: dc.title | Existência e regularidade de solução para uma equação elíptica semilinear com não linearidade singular | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: