Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ferreira, Diego Marques | - |
Autor(es): dc.creator | Costa, Diego Alves da | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:35:33Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:35:33Z | - |
Data de envio: dc.date.issued | 2024-08-07 | - |
Data de envio: dc.date.issued | 2024-08-07 | - |
Data de envio: dc.date.issued | 2024-08-07 | - |
Data de envio: dc.date.issued | 2023-10-29 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/49625 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/886938 | - |
Descrição: dc.description | Tese (doutorado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2023. | - |
Descrição: dc.description | Neste trabalho de tese, estudamos duas generalizações para problemas propostos por Mahler em 1976 sobre o comportamento aritmético de funções analíticas, a saber, o Problema B e o Problema C. Na primeira generalização, investigamos a existência de funções inteiras e transcendentes, com coeficientes racionais, tais que tanto a imagem quanto a imagem inversa do conjunto dos números algébricos por estas funções, e por todas as suas derivadas, sejam subconjuntos de Q. Na segunda generalização, caracterizamos quais subconjuntos Q m , onde m ´e um natural maior ou igual a 2, podem ser o conjunto excepcional de uma função f : C m → C inteira, transcendente e com coeficientes racionais. | - |
Descrição: dc.description | In this thesis work, we study two generalizations for problems proposed by Mahler in 1976 on the arithmetic behavior of analytic functions, namely, Problem B and Problem C. In the first generalization, we investigate the existence of entire and transcendental functions, with rational coefficients, such that both the image and the inverse image of the set of algebraic numbers by these functions, and by all its derivatives, are subsets of Q. In the second generalization, we characterize which subsets Q m , where m is an integer number greater than or equal to 2, can be the exceptional set of an entire transcendental function f : C m → C with rational coefficients. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Problemas de Mahler | - |
Palavras-chave: dc.subject | Aritmética | - |
Palavras-chave: dc.subject | Funções (Matemática) | - |
Título: dc.title | Sobre os problemas B e C de Mahler | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: