Quase todas as matrizes complexas são diagonalizáveis : uma abordagem transdisciplinar

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorZapata, Theo Allan Darn-
Autor(es): dc.creatorCardoso, Rubens Ricardo Miranda-
Data de aceite: dc.date.accessioned2024-10-23T14:57:58Z-
Data de disponibilização: dc.date.available2024-10-23T14:57:58Z-
Data de envio: dc.date.issued2020-04-02-
Data de envio: dc.date.issued2020-04-02-
Data de envio: dc.date.issued2020-04-02-
Data de envio: dc.date.issued2019-07-19-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/37301-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/870944-
Descrição: dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Mestrado Profissional em Matemática em Rede Nacional, 2019.-
Descrição: dc.descriptionNos primeiros cursos de Álgebra Linear, são apresentados aos estudantes exemplos de matrizes complexas que não são diagonalizáveis. Nesse contexto, é razoável indagar se a maioria das matrizes complexas são diagonalizáveis. A presente dissertação se debruça nessa questão. Por meio da Topologia, faz-se uma prova da densidade do conjunto das matrizes complexas diagonalizáveis, utilizando o Teorema da Decomposição de Schur. No contexto da medida e da integral de Lebesgue, prova-se que o conjunto das matrizes complexas não diagonalizáveis tem medida nula. Na perspectiva da Álgebra, por meio da topologia de Zariski, dá-se uma demonstração da densidade do conjunto das matrizes complexas diagonalizáveis, usando somente polinômios. Discutem-se as interdependências entre os resultados obtidos por meio da Topologia, da Medida e da Álgebra.-
Descrição: dc.descriptionIn the first courses of Linear Algebra, examples of complex matrices that are not diagonalizable are presented to students. In this context, it is reasonable to ask whether most of the complex matrices are diagonalizable. The present dissertation deals with this issue. By means of the topology, the density of the set of the diagonalizable complex matrices is proved using the Schur Decomposition Theorem. In the context of the Lebesgue measure and integral, it is proved that the set of non-diagonalizable complex matrices has null measure. In the Algebra perspective, through the Zariski topology, we demonstrate the density of the set of complex diagonalizable matrices using only polynomials. We discuss the interdependencies among the results obtained through Topology, Measure and Algebra.-
Descrição: dc.descriptionInstituto de Ciências Exatas (IE)-
Descrição: dc.descriptionDepartamento de Matemática (IE MAT)-
Descrição: dc.descriptionPrograma de Pós-Graduação em Matemática em Rede Nacional, Mestrado Profissional-
Formato: dc.formatapplication/pdf-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsA concessão da licença desta coleção refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.-
Palavras-chave: dc.subjectMatrizes diagonalizáveis-
Palavras-chave: dc.subjectMatrizes (Matemática)-
Palavras-chave: dc.subjectTeorema da Decomposição de Schur-
Palavras-chave: dc.subjectTopologia de Zariski-
Título: dc.titleQuase todas as matrizes complexas são diagonalizáveis : uma abordagem transdisciplinar-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.