Previsão de vazão para UHE de Sobradinho utilizando técnicas de redes neurais

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorCataldi, Marcio-
Autor(es): dc.contributorhttp://lattes.cnpq.br/7262670454819823-
Autor(es): dc.contributorZanandrea, Franciele-
Autor(es): dc.contributorPaiva, Luana Ferreira Gomes de-
Autor(es): dc.creatorAmarante, João Gabriel Muniz-
Data de aceite: dc.date.accessioned2024-07-11T18:00:50Z-
Data de disponibilização: dc.date.available2024-07-11T18:00:50Z-
Data de envio: dc.date.issued2023-11-15-
Data de envio: dc.date.issued2023-11-15-
Fonte completa do material: dc.identifierhttp://app.uff.br/riuff/handle/1/31130-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/761856-
Descrição: dc.descriptionNo Brasil, a utilização dos recursos hídricos é fundamental para a geração de energia elétrica. Um melhor aproveitamento desses recursos pode ser determinante para a garantia do suprimento elétrico para os próximos anos. Para compreender sua natureza, tem-se utilizado a modelagem computacional afim de realizar previsões de curto e longo prazo. Dado a complexidade de representar fisicamente todos os fenômenos envolvidos, as redes neurais apoiam na predição das séries temporais, em especial envolvendo problemas dinâmicos, não-lineares e de natureza caótica. Nesse trabalho, aborda-se a modelagem por aprendizado de máquina com rede neural para a previsão de vazão da UHE de Sobradinho, localizada na Bacia do Rio São Francisco, Bahia. Na metodologia, foram feitas análises hidrometeorológicas das séries de vazões e precipitações na área de estudo. A partir do conhecimento das variáveis envolvidas, foram elaborados dois experimentos para a obtenção da previsão de vazão. Para ambos os experimentos, foi utilizado a técnica de Validação Cruzada para a separação das séries de treino e de teste e a rede neural Percepetron de Múltiplas Camadas (MLP). No primeiro experimento, o modelo foi construído a partir da área total da bacia compreendida entre o posto fluviométrico de São Francisco, o posto fluviométrico de Boqueirão e a vazão natural da UHE de Sobradinho. No segundo experimento, foram delimitadas áreas incrementais entre o posto de São Francisco e a UHE de Sobradinho e construídos modelos para cada uma dessas áreas, afim de propagar as vazões e obter a vazão final da cascata. Os resultados obtidos sugerem que a técnica de modelagem com redes neurais apresenta-se como metodologia eficiente para a previsão de vazão. Com relação aos resultados, o segundo experimento no qual trata da modelagem de sub-bacias incrementais mostrou o melhor desempenho, sugerindo ser um método eficaz da modelagem da região-
Descrição: dc.descriptionIn Brazil, the utilization of water resources is fundamental for the generation of electricity. A better management of these resources can be crucial to ensure the electric supply for the coming years. In order to understand their nature, computational modeling has been used to make short and long-term predictions. Given the inability to physically comprehend all the involved phenomena, neural networks support the prediction of time series, particularly those involving dynamic, nonlinear, and chaotic problems. This work addresses machine learning modeling with a neural network for the forecasting of flow rates in the Sobradinho Hydropower Plant, located in the São Francisco River Basin, Bahia. In the methodology, hydro-meteorological analyses of flow rates and precipitation series in the study areas were conducted. Based on the understanding of the variables involved, two experiments were developed to obtain flow rate forecasts. For both experiments, Cross-Validation technique was employed to separate the training and testing series, and the Multilayer Perceptron neural network was used. In the first experiment, the model was built using the entire area of the basin between the São Francisco River gauging station, the Boqueirão river gauging station, and the flow rate of the Sobradinho Hydropower Plant. In the second experiment, incremental areas were defined between the São Francisco gauging station and the Sobradinho Hydropower Plant, and models were constructed for each of these areas in order to propagate the flow rates and obtain the final cascade flow rate. The results obtained suggest that the modeling technique using neural networks proves to be an efficient methodology for flow rate forecasting. Regarding the results, the second experiment, which deals with the modeling of incremental sub-basins, showed the best performance, suggesting it to be an effective method for modeling the region-
Descrição: dc.description76 p.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Direitos: dc.rightsOpen Access-
Direitos: dc.rightsCC-BY-SA-
Palavras-chave: dc.subjectPercepetron de múltiplas camadas-
Palavras-chave: dc.subjectSobradinho-
Palavras-chave: dc.subjectAprendizado de máquina-
Palavras-chave: dc.subjectHidrologia-
Palavras-chave: dc.subjectChuva-vazão-
Palavras-chave: dc.subjectSobradinho, Barragem de (BA)-
Palavras-chave: dc.subjectRecurso hídrico-
Palavras-chave: dc.subjectModelagem computacional-
Palavras-chave: dc.subjectMultilayer perceptron-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectHydrology-
Palavras-chave: dc.subjectRainfall-runoff-
Título: dc.titlePrevisão de vazão para UHE de Sobradinho utilizando técnicas de redes neurais-
Tipo de arquivo: dc.typeTrabalho de conclusão de curso-
Aparece nas coleções:Repositório Institucional da Universidade Federal Fluminense - RiUFF

Não existem arquivos associados a este item.