Novo método para identificação de estratificações de sal utilizando machine learning sobre atributos sísmicos

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorSantos, Marco Antonio Cetale-
Autor(es): dc.contributorBordignon, Alex Laier-
Autor(es): dc.contributorSilva, Cleverson Guizan-
Autor(es): dc.contributorMachado, Marcos de Carvalho-
Autor(es): dc.contributorMaul, Alexandre Rodrigo-
Autor(es): dc.creatorMesquita, Flavio Costa de-
Data de aceite: dc.date.accessioned2024-07-11T17:44:50Z-
Data de disponibilização: dc.date.available2024-07-11T17:44:50Z-
Data de envio: dc.date.issued2021-06-17-
Data de envio: dc.date.issued2021-06-17-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttps://app.uff.br/riuff/handle/1/22358-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/756680-
Descrição: dc.descriptionPara construir uma imagem sísmica, precisamos processar as informações das reflexões das interfaces das rochas. Essas reflexões ocorrem em função das diferenças das propriedades de impedância entre as rochas, que são calculadas como uma combinação de medidas de densidade e velocidade de compressão (inverso da vagarosidade). A halita, geralmente o mineral mais abundante na seção denominada sal, tem uma densidade média de cerca de 2,14 g/cm3 e velocidade de compressão da ordem de 4.500 m/s. Em termos de estudos sísmicos, até o período recente, o modelo inicial para a seção de evaporitos era considerado aproximadamente constante refletindo as propriedades da halita, porém esta aproximação leva a erros no processo de migração em profundidade quando o sal se apresenta estratificado como é o caso da Bacia de Santos. Com a evolução dos algoritmos de migração sísmica e da capacidade computacional, percebeu-se a necessidade de modelar a seção de sal de forma mais complexa tornando-a menos homogênea, pois a formação de evaporitos (processo de evaporação) ocorre em estágios, de acordo com taxas de evaporação específicas, gerando as camadas observadas, também denominadas estratificações. Existem muitos tipos de minerais evaporitos na seção evaporítica das bacias de Santos e Campos, sendo os mais comuns halita, anidrita, gipsita, carnalita, taquidrita e silvita. Estudos realizados na análise de perfis mostram que nem todos esses tipos de minerais serão sísmicamente detectáveis por amplitude devido serem delgados e estarem abaixo da resolução sísmica. Assim, para facilitar a identificação dos estratos, os minerais evaporíticos na seção de sal vem sendo agrupados em três fácies principais: halita, sais de alta velocidade (anidrita e gipsita) e sais de baixa velocidade (carnalita, silvita e taquidrita), esses últimos são de especial interesse devido a sua alta solubilidade que pode vir a ocasionar problemas de circulação durante a perfuração podendo levar até mesmo ao abandono do poço. Devido a baixa quantidade de poços onde aparecem os chamados sais de baixa velocidade, além do próprio sinal foram também utilizados atributos sísmicos de forma que melhor representassem as camadas de sal esperadas de acordo com os perfis de poço. Muitos trabalhos foram feitos no sentido de inserir estas estratificações no modelo de velocidade, alguns trabalhos indicavam que mesmo a inserção de heterogeneidades randomicamente na camada de sal (o chamado “sal sujo”) já contribui na produção de melhores imagens no processo de migração. Neste trabalho apresentamos uma metodologia de construção de modelos de velocidades sísmicas onde é possível inserir essas estratificações baseado na identificação e separação das wavelets num modelo de clusters de uma sísmica migrada utilizando os poços perfurados na região como referencia e então utilizar esse modelo de clusters para comparar ponto a ponto o traço sísmico e gerar assim um novo modelo que considera as estratificações de sal e suas respectivas velocidades sísmicas. Para isso foram utilizadas técnicas de machine learning e os mais modernos algoritmos de clusterização, redução de dimensionalidade e atribuição.-
Descrição: dc.descriptionTo build a seismic image, we need to process the reflection information from the rock interfaces. These reflections occur as a function of differences in impedance properties between rocks, which are calculated as a combination of density and compression velocity measurements (inverse of slowness). Halite, generally the most abundant mineral in the section called salt, has an average density of about 2.14 g/cm3 and a compressional velocity of about 4,500 m/s. In terms of seismic studies, until the recent period, the initial model for the evaporite section was considered approximately constant reflecting the properties of halite, but this approximation leads to errors in the depth migration process when salt is stratified as is the case of the Santos Basin. With the evolution of seismic migration algorithms and computational capacity, it was realized the need to model the salt section in a more complex way making it less homogeneous, since the formation of evaporites (evaporation process) occurs in stages, according to specific evaporation rates, generating the observed layers, also called stratifications. There are many types of evaporite minerals in the evaporitic section in the Santos and Campos basins, the most common being halite, anhydrite, gypsum, carnallite, tachihydrite and silvite. Studies in well log analysis show that not all these minerals will be seismically detectable by amplitude, due to its thin layer it will be below the seismic resolution. Thus, to facilitate the identification of the strata, the evaporitic minerals in the salt section have been grouped into three main facies: halite, high-velocity salts (anhydrite and gypsum) and low-velocity salts (carnalite, sylvite and tachyhidrite). These last ones are of particular interest because of its high solubility which may cause circulation problems during drilling and may even lead to well abandonment. Due to the low number of wells where so-called low velocity salts appear, in addition to the signal itself, seismic attributes were also used to better represent the expected salt layers according to the well logs. Much work has been done to insert these stratifications into the velocity model, some studies have indicated that even randomly inserted heterogeneities into the salt layer (the so-called “dirty salt”) already helps to produce better images in the migration process. In this work we present a methodology for building seismic velocity models where it is possible to insert these stratifications based on the identification and separation of wavelets in a cluster model of a seismic already migrated using the wells drilled in the region as a reference and then use this cluster model to compare the seismic trace point by point and thus generate a new model that considers the salt stratifications and their respective seismic velocities. In order to achieve it we used machine learning techniques and the most modern clustering, dimensionality reduction and assignment algorithms.-
Descrição: dc.description102-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Direitos: dc.rightsOpen Access-
Direitos: dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/br/-
Direitos: dc.rightsCC-BY-SA-
Palavras-chave: dc.subjectSequência evaporítica-
Palavras-chave: dc.subjectPré-sal-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectModelagem-
Palavras-chave: dc.subjectEstratificação de sal-
Palavras-chave: dc.subjectSequência evaporítica-
Palavras-chave: dc.subjectModelagem-
Palavras-chave: dc.subjectMachine Learning-
Palavras-chave: dc.subjectPré-sal-
Palavras-chave: dc.subjectEvaporitic sequence-
Palavras-chave: dc.subjectPre-salt-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectModelling-
Título: dc.titleNovo método para identificação de estratificações de sal utilizando machine learning sobre atributos sísmicos-
Tipo de arquivo: dc.typeDissertação-
Aparece nas coleções:Repositório Institucional da Universidade Federal Fluminense - RiUFF

Não existem arquivos associados a este item.