Controle de posição utilizando algoritmo genético com minimização de entropia do erro

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorScalassara, Paulo Rogério-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5016119298122922-
Autor(es): dc.contributorAgulhari, Cristiano Marcos-
Autor(es): dc.contributorhttp://lattes.cnpq.br/4935395556663775-
Autor(es): dc.contributorScalassara, Paulo Rogério-
Autor(es): dc.contributorAngélico, Bruno Augusto-
Autor(es): dc.contributorEndo, Wagner-
Autor(es): dc.contributorAgulhari, Cristiano Marcos-
Autor(es): dc.creatorJacinto, Daniel Cordeiro-
Data de aceite: dc.date.accessioned2022-02-21T22:19:22Z-
Data de disponibilização: dc.date.available2022-02-21T22:19:22Z-
Data de envio: dc.date.issued2018-08-17-
Data de envio: dc.date.issued2018-08-17-
Data de envio: dc.date.issued2018-05-11-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/3351-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/672589-
Descrição: dc.descriptionThis work proposes the synthesis of controllers applying a Genetic Algorithm, whose objective function is to minimize the entropy of the error. Recent studies demonstrate that methods used in systems that use the mean square error for error estimation do not present satisfactory performance when dealing with non-Gaussian and nonlinear signals, so it was necessary to search for new alternatives to solve more complex problems. The error entropy minimization method has been used in researches and presenting satisfactory performance in this area. The controllers used are data in the form of a transfer function and we searched for the tuning of the parameters of the genetic algorithm in search of better performance for the generated controller. For tests, simulations were performed using MATLAB software and the validation was performed in a torsion plant with MATLAB / Simulink. A comparison with the mean square error method is also presented. Satisfactory results were found for both methods, however, it was observed a longer execution time for the entropy minimization due to the greater complexity of its function, which uses Parzen’s windowing techniques to estimate the probability density function of the error.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná-
Descrição: dc.descriptionEste trabalho tem como proposta a síntese de controladores aplicando um Algoritmo Genético, cuja função objetivo é minimizar a entropia do erro. Recentes estudos demonstram que métodos utilizados em sistemas que utilizam o erro quadrático médio para estimativa de erros não apresentam desempenho satisfatório se tratando de sinais não-gaussianos e não-lineares, assim foi necessária a busca de novas alternativas para resolução de problemas mais complexos. O método de minimização de entropia do erro vem sendo utilizado em pesquisas e apresentando desempenho satisfatório nesta área. Os controladores utilizados são dados na forma de função de transferência e buscou-se pela sintonização dos parâmetros do algoritmo genético em busca de melhor performance para o controlador gerado. Para testes foram feitas simulações utilizando o software MATLAB e a validação foi realizada em uma planta torcional com MATLAB/Simulink. Também é apresentada uma comparação com o método do erro quadrático médio. Resultados satisfatórios foram encontrados para ambos os métodos, porém, notou-se maior tempo de execução para a minimização de entropia devido a maior complexidade de sua função, que utiliza técnicas de janelamento de Parzen para estimar a função densidade de probabilidade do erro.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCornelio Procopio-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectEntropia-
Palavras-chave: dc.subjectAlgorítmos genéticos-
Palavras-chave: dc.subjectEngenharia elétrica-
Palavras-chave: dc.subjectEntropy-
Palavras-chave: dc.subjectGenetic algorithms-
Palavras-chave: dc.subjectElectric engineering-
Palavras-chave: dc.subjectCNPQ::ENGENHARIAS-
Palavras-chave: dc.subjectEngenharia Elétrica-
Título: dc.titleControle de posição utilizando algoritmo genético com minimização de entropia do erro-
Título: dc.titlePosition control using genetic algorithms with minimization of error entropy-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.