Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Winkler, Anderson Marcelo | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/3158613415305645 | - |
Autor(es): dc.contributor | Gamba, Humberto Remigio | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/9211006688316492 | - |
Autor(es): dc.contributor | Gamba, Humberto Remigio | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/9211006688316492 | - |
Autor(es): dc.contributor | Sato, Joao Ricardo | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/7913813209624175 | - |
Autor(es): dc.contributor | Melo Jr, Luiz Ledo Mota | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/6264380736822687 | - |
Autor(es): dc.creator | Alberton, Bianca Alessandra Visineski | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:45:47Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:45:47Z | - |
Data de envio: dc.date.issued | 2020-07-01 | - |
Data de envio: dc.date.issued | 2020-07-01 | - |
Data de envio: dc.date.issued | 2020-02-17 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/5050 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/659968 | - |
Descrição: dc.description | The multiple testing problem appears in brain imaging in the context of the general linear model in two forms: a statistical test is performed at each voxel or vertex of the image, and multiple contrasts are tested over the same data. The first has been greatly studied and various different procedures have been proposed, e.g., Bonferroni, random field theory, non-parametric approaches and false discovery rate. The second arises when there are various hypotheses (contrasts) about the same model, or different models are analyzed using the same data. If left uncontrolled, such multiplicity can lead to an undesirably high false positive rate, and spurious effects can be interpreted as real. Even though a number of methods have been proposed for contrast correction in non-imaging fields, most of these have seen little use in brain imaging, and often the brain analyses are reported without such correction. Thus, in this work, I discuss and compare the correction performance from Bonferroni, Dunn–Šidák, Fisher’s lsd, Tukey, Scheffé, Fisher–Hayter, Wang–Cui and Westfall–Young permutation method using both simulated data and real data from imaging studies of the brain. Although some procedures had good performance in some simulation scenarios, permutation method was the most suitable method to correct for multiple testing: it can be used to correct across both contrasts and voxels (or vertices), showed a strong control of the fwer, can be used with balanced and unbalanced models, and held one of the highest power independently of the number of contrasts tested or their dependency structure. I also confirmed that Fisher’s lsd presents a weak control of the fwer for more than three groups and, therefore, is invalid. Using magnetic resonance images of the brain, I showed how these methods can be applied to different types of analysis, such that they can be used as guideline for anyone working with neuroimaging. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | O problema dos testes múltiplos aparece em neuroimagem de duas formas no contexto do modelo linear general: um teste estatístico é realizado em cada voxel ou vértice da imagem, ou vários contrastes são testados utilizando os mesmos dados. Para o primeiro, diversos procedimentos para correção foram propostos, como por exemplo, Bonferroni, teoria dos campos aleatórios, testes não paramétricos e taxa de falsas descobertas. O segundo surge quando existem várias hipóteses (contrastes) sobre o mesmo modelo ou diversos modelos são testados usando os mesmos dados. Se não for controlada, essa multiplicidade de testes pode levar a uma taxa de falsos positivos acima do desejável e efeitos espúrios podem ser interpretados como reais. Embora vários métodos tenham sido propostos para correção de testes múltiplos em contrastes em outros campos do conhecimento, muitos são pouco conhecidos na área de neuroimagens e muitas vezes os estudos de imagens do cérebro são relatadas sem essa correção. Portanto, neste trabalho, são avaliados diversos métodos para correção dos testes múltiplos em contrastes, especificamente os métodos de Bonferroni, Dunn–Šidák, Fisher’s lsd, Tukey, Scheffé, Fisher–Hayter, Wang–Cui e Westfall–Young. O desempenho de cada método foi analisado usando tanto dados simulados, como imagens reais de ressonância magnética do cérebro. De maneira geral, o único método com bom desempenho em todos os cenários considerados foi o proposto por Westfall–Young, o qual efetua a correção analisando a distribuição do máximo obtida por meio de permutações. Verificou-se que este método apresenta controle do tipo forte sobre a taxa de erros na família de testes, pode ser usado com modelos balanceados e desbalanceados, e que é um dos procedimentos com maior poder, independentemente do número de contrastes testados ou de sua estrutura de dependência. O método de Westfall–Young também tem a vantagem de poder ser usado para corrigir simultaneamente contrastes, voxels (ou vértices) e modalidades, além de poder ser aplicado a estudos que envolvem regressores contínuos e discretos. Também foi confirmado que o método lsd apresenta um controle fraco da taxa de erros na família de testes quando há mais de três grupos e, portanto, é inválido. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Curitiba | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Cérebro - Radiografia | - |
Palavras-chave: dc.subject | Cérebro - Imagem - Testes | - |
Palavras-chave: dc.subject | Cérebro - Doenças - Diagnóstico | - |
Palavras-chave: dc.subject | Diagnóstico por imagem - Simulação por computador | - |
Palavras-chave: dc.subject | Brain - Radiography | - |
Palavras-chave: dc.subject | Brain - Imaging - Testing | - |
Palavras-chave: dc.subject | Brain - Diseases - Diagnosis | - |
Palavras-chave: dc.subject | Diagnostic imaging - Computer simulation | - |
Palavras-chave: dc.subject | CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS | - |
Palavras-chave: dc.subject | Engenharia Elétrica | - |
Título: dc.title | Multiple testing correction over contrasts for brain imaging | - |
Título: dc.title | Correção para o problema dos testes múltiplos em contraste aplicado a neuroimagem | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: