Higher order derivatives of trigonometric functions, stirling numbers of the second kind, and zeon algebra.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorFrancisco Neto, Antônio-
Data de aceite: dc.date.accessioned2019-11-06T13:34:40Z-
Data de disponibilização: dc.date.available2019-11-06T13:34:40Z-
Data de envio: dc.date.issued2015-05-22-
Data de envio: dc.date.issued2015-05-22-
Data de envio: dc.date.issued2014-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/5438-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/558520-
Descrição: dc.descriptionIn this work we provide a new short proof of closed formulas for the n-th derivative of the cotangent and secant functions using simple operations in the context of the Zeon algebra. Our main ingredients in the proof comprise a representation of the ordinary derivative as an integration over the Zeon algebra, a representation of the Stirling numbers of the second kind as a Berezin integral, and a change of variables formula under Berezin integration. The approach described here is also suitable to give closed expressions for higher order derivatives of tangent, cosecant and all the aforementioned functions hyperbolic analogues.-
Idioma: dc.languageen-
Direitos: dc.rightsAuthors retain the copyright of their submitted papers. Fonte: Journal of Integer Sequences. <https://cs.uwaterloo.ca/journals/JIS/index.html> Acesso em: 23 abr. 2015.-
Título: dc.titleHigher order derivatives of trigonometric functions, stirling numbers of the second kind, and zeon algebra.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.