Uma proposta de algoritmo de escalonamento de aplicações móveis sensíveis ao contexto para o paradigma fog computing

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBarros, Celestino Lopes de-
Autor(es): dc.creatorRocio, Vitor-
Autor(es): dc.creatorSousa, André-
Autor(es): dc.creatorParedes, Hugo-
Data de aceite: dc.date.accessioned2022-02-15T14:07:36Z-
Data de disponibilização: dc.date.available2022-02-15T14:07:36Z-
Data de envio: dc.date.issued2021-01-10-
Data de envio: dc.date.issued2021-01-10-
Data de envio: dc.date.issued2020-11-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/10400.2/10376-
Fonte completa do material: dc.identifierhttps://doi.org/10.34627/rcc.v15i0.251-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/10400.2/10376-
Descrição: dc.descriptionEscalonamento na arquitetura cloud e no paradigma fog continuam a apresentar alguns desafios aliciantes. Na cloud, segundo o conhecimento dos autores, ela é amplamente estudada e em muitas pesquisas é abordada na perspetiva de provedores de serviço. Na fog, é muito complexo e, existem poucos estudos. Procurando trazer contributos inovadores nas áreas de escalonamento de tarefas, neste artigo, propomos uma solução para o problema de escalonamento de aplicações móveis sensíveis ao contexto para o paradigma fog computing onde diferentes parâmetros de contexto são normalizados através da normalização Min-Max, as prioridades são definidas através da aplicação da técnica da Regressão Linear Múltipla (RLM) e o escalonamento é feito recorrendo a técnica de Otimização de Programação Não Linear Multi-objetivo (MONLP).-
Descrição: dc.descriptionScheduling in cloud architecture and in the fog paradigm continue to present some exciting challenges. In the cloud, according to the authors' knowledge, it is widely studied and in many researches, it is addressed from the perspective of service providers. In fog, it is very complex and there are few studies. Trying to bring innovative contributions in the areas of task scheduling, in this paper we propose a solution to the problem of context-aware scheduling of mobile applications for the fog computing paradigm, where different context parameters are normalized through Min-Max normalization, priorities are defined by applying the Multiple Linear Regression (MLR) technique and scheduling is performed using Multi-Objective Nonlinear Programming Optimization (MONLP) technique.-
Descrição: dc.descriptioninfo:eu-repo/semantics/publishedVersion-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Aberta-
Relação: dc.relationhttps://journals.uab.pt/index.php/rcc/article/view/251-
Direitos: dc.rightsopenAccess-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
Palavras-chave: dc.subjectQualidade de experiência-
Palavras-chave: dc.subjectCloud e fog computing-
Palavras-chave: dc.subjectEscalonamento na arquitetura cloud e fog-
Palavras-chave: dc.subjectEscalonamento sensível ao contexto-
Palavras-chave: dc.subjectQuality of experience-
Palavras-chave: dc.subjectCloud and fog computing-
Palavras-chave: dc.subjectScheduling in cloud architecture and fog paradigm-
Palavras-chave: dc.subjectContext-aware scheduling-
Palavras-chave: dc.subjectODS::04:Educação de Qualidade-
Título: dc.titleUma proposta de algoritmo de escalonamento de aplicações móveis sensíveis ao contexto para o paradigma fog computing-
Título: dc.titleA proposal of context-aware scheduling of mobile applications for the fog computing paradigm-
Tipo de arquivo: dc.typelivro digital-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Aberto - Universidade Aberta (Portugal)

Não existem arquivos associados a este item.