Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Natti, Paulo Laerte [Orientador] | - |
Autor(es): dc.contributor | Santiago, Cosmo Damião | - |
Autor(es): dc.contributor | Romeiro, Neyva Maria Lopes | - |
Autor(es): dc.creator | Luiz, Kariston Stevan | - |
Data de aceite: dc.date.accessioned | 2025-05-15T13:07:36Z | - |
Data de disponibilização: dc.date.available | 2025-05-15T13:07:36Z | - |
Data de envio: dc.date.issued | 2024-05-01 | - |
Data de envio: dc.date.issued | 2024-05-01 | - |
Data de envio: dc.date.issued | 2025-05-15 | - |
Data de envio: dc.date.issued | 2025-05-15 | - |
Fonte completa do material: dc.identifier | https://repositorio.uel.br/handle/123456789/16221 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/980741 | - |
Descrição: dc.description | Resumo: Nesse trabalho, estuda-se a convergência numérica de um sistema de equações predador-presa do tipo telegráfico, com efeitos reativos, difusivos e de retardo Tal sistema de EDPs pode descrever sistemas biológicos em que tais efeitos não possam ser desprezados Inicialmente realizou-se a modelagem matemática do problema, e em seguida fez-se a discretização do sis- tema de EDPs em uma malha no nível de tempo k, por meio do método das diferenças finitas, obtendo um sistema de equações explícitas Em seguida, analisou-se a consistência dos mé- todos de discretização de um sistema de equações predador-presa clássico, de uma equação telegráfica e por fim de uma equação telegráfica predador-presa Posteriormente foram calculadas as condições de estabilidade de Von Neumann para estas equações Através do Teorema de Equivalência de Lax verificou-se que o refinamento da malha, bem como os parâmetros dos modelos, as constantes reativas, a constante de difusão e o termo de retardo, oriundo da equação de Maxwell-Cattaneo, determinam as condições de estabilidade/instabilidade do problema | - |
Descrição: dc.description | Dissertação (Mestrado em Matemática Aplicada e Computacional) - Universidade Estadual de Londrina, Centro de Ciências Exatas, Programa de Pós-Graduação em Matemática Aplicada e Computacional | - |
Descrição: dc.description | Abstract: In this work, we study the numerical convergence of a predator-prey system of the telegraphic type equation, with reactive, diffusive, convective and delay effects This system of PDEs can describe biological systems in which such effects can not be ignored Initially the mathematical modeling of the problem was performed, and the system of PDEs was discretized in a mesh at the time step k by the finite difference method, obtaining a system of explicit equations Then, the consistency of the methods of discretization of a system of classic predator-prey equations, a telegraphic equation, and finally a predator-prey telegraph equation was analyzed Subse- quently, the Von Neumann stability conditions were calculated for these equations Through the Lax Equivalence Theorem, it was verified that the mesh refinement, as well as the parame- ters of the models, the reactive constants, the diffusion constant and the delay term, from the Maxwell-Cattaneo equation determine the stability/instability conditions of the problem | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Relação: dc.relation | Mestrado | - |
Relação: dc.relation | Matemática Aplicada e Computacional | - |
Relação: dc.relation | Centro de Ciências Exatas | - |
Relação: dc.relation | Programa de Pós-Graduação em Matemática Aplicada e Computacional | - |
Palavras-chave: dc.subject | Matemática aplicada | - |
Palavras-chave: dc.subject | Equações diferenciais parciais | - |
Palavras-chave: dc.subject | Applied mathematics - Computer | - |
Título: dc.title | Convergência numérica das equações telegráficas predador-presa | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional da UEL - RIUEL |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: