
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Ferreira, Diego Marques | - |
| Autor(es): dc.creator | Freitas, Gersica Valesca Lima de | - |
| Data de aceite: dc.date.accessioned | 2025-03-18T19:12:27Z | - |
| Data de disponibilização: dc.date.available | 2025-03-18T19:12:27Z | - |
| Data de envio: dc.date.issued | 2018-01-25 | - |
| Data de envio: dc.date.issued | 2018-01-25 | - |
| Data de envio: dc.date.issued | 2017-09-20 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/31096 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/963191 | - |
| Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. | - |
| Descrição: dc.description | Os números de Fibonacci possui várias generalizações, entre elas temos a sequência (Fn (k))n que é chamada de sequência de Fibonacci k-generalizada. Observando a identidade F2 n+F2 n+1=F2n+1, Chaves e Marques, em 2014, provaram que a equação Diofantina (Fn (k))2+ (F(k) n+1)2= Fm (k) não possui soluções em inteiros positivos n, m e k, com n > 1 e k ≥ 3. Nesse trabalho, mostramos que a equação Diofantina (Fn (k))2 +(F(k) n+1)2 = Fm (l), não possui solução para 2≤ k < l e n > k + 1. Outra generalização da sequência de Fibonacci s˜ao os coeficientes fibonomiais. Em 2015, Marques e Trojovský provaram que uma condição mais fraca. se p ≡ ± 1 (mod 5), então p † [pa+1 pa] , para todo a ≥ 1.Nesse trabalho, encontramos as classe de resíduos de módulo p, p2, p3 e p4, quando p ≡ ± 1 (mod 5) e sobre uma condição mais fraca. Em particular, provamos que se p é um número primo tal que p ≡ ± 1 (mod 5), então [pa+1 pa] ≡ 1 (mod p). | - |
| Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). | - |
| Descrição: dc.description | Regarding the identity F2 n+F2 n+1=F2n+1, Chaves and Marques, in 2014, proved that (Fn (k))2+ (F(k) n+1)2= Fm (k) does not have solution for integers n, m e k, with n > 1 and k ≥ 3. In this work, we show that (Fn (k))2 +(F(k) n+1)2 = Fm (l) does not have solutions for 2≤ k < l and n > k + 1. Another generalization of the Fibonacci sequence are the Fibonomial coe#cients. In 2015, Marques and Trojovský proved that if p ≡ ± 1 (mod 5), then p † [pa+1 pa] for all a ≥ 1. In this work, we also find the residue class of [pa+1 pa] modulo p, p2, p3 e p4, when p ≡ ± 1 (mod 5) under some weak hypothesis. In particular, we proved that if p is a prime number such that p ≡ ± 1 (mod 5), then [pa+1 pa] ≡ 1 (mod p). | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
| Palavras-chave: dc.subject | Sequências (Matemática) | - |
| Palavras-chave: dc.subject | Equações diofantinas | - |
| Palavras-chave: dc.subject | Coeficientes | - |
| Palavras-chave: dc.subject | Sequência de Fibonacci | - |
| Título: dc.title | Sobre problemas envolvendo números de k-bonacci e coeficientes fibonomiais | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB - Rep. 1 | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: