Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Dantas, Alex Carrazedo | - |
Autor(es): dc.creator | Oliveira, Junio Rocha de | - |
Data de aceite: dc.date.accessioned | 2025-03-18T18:59:48Z | - |
Data de disponibilização: dc.date.available | 2025-03-18T18:59:48Z | - |
Data de envio: dc.date.issued | 2025-03-17 | - |
Data de envio: dc.date.issued | 2025-03-17 | - |
Data de envio: dc.date.issued | 2025-03-17 | - |
Data de envio: dc.date.issued | 2024-12-03 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/51939 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/959875 | - |
Descrição: dc.description | O grupo de automorfismos Am da árvore m-regular com uma raíz Tm é identificado com o produto entrelaçado Am ≀Y Sm, onde Y = {1,...,m}. Um subgrupo G de Am é finito por estado se dado α = (α1,...,αm)σ ∈ G, Q(α) é finito, onde Q(α) = {α} ∪Q(α1)∪ ··· ∪ Q(αm) é o conjunto de estados de α. E G é autossimilar se para todo α ∈ G, tivermos Q(α) ⊂ G. Um grupo finitamente gerado é um autômata-grupo se for autossimilar e finito por estado. Desenvolveremos resultados para obtenção de imersões em autômata-grupos de grupos do tipo A ≀ G, onde A é um grupo abeliano finitamente gerado e G é um subgrupo de um autômata-grupo. Em particular, obtemos representações dos grupos C2 ≀(C2 ≀Z), Z≀(C2 ≀Z), C2 ≀(Z≀Z) e Z≀(Z≀Z). Para o caso do grupo Z≀(Z≀Z), provamos que ele é subgrupo de um autômata-grupo gerado por um alfabeto de duas letras, respondendo afirmativamente o Problema 15.19 - (b) do Kourovka Notebook propostos por A. M. Brunner e S. Sidki em 2002. [6, 17] | - |
Descrição: dc.description | The group of automorphisms Am of the one-rooted regular m-tree Tm is identified with the wreath product Am ≀Y Sm, where Y = {1,...,m}. A subgroup G of Am is said to be finite-state if given α = (α1,...,αm)σ ∈ G, Q(α) is finite, where Q(α) = {α} ∪Q(α1)∪ ··· ∪Q(αm). And G is self-similar if for every α ∈ G we have Q(α) ⊂ G. A finitely generated group is said to be an automata group if it admits a faithful self-similar finite-state representation on some regular m-tree. We prove that if G is a subgroup of an automata group, then for each finitely generated abelian group A, the wreath product A≀ G is a subgroup of an automata group. We obtain, for example, that C2 ≀(C2 ≀Z), Z≀(C2 ≀Z), C2 ≀(Z≀Z), and Z≀(Z≀Z) are subgroups of automata groups. In the particular case Z≀(Z≀Z), we prove that it is a subgroup of a two-letters automata group; this solves Problem 15.19 - (b) of the Kourovka Notebook proposed by A. M. Brunner and S. Sidki in 2000 [8, 17]. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Produto entrelaçado | - |
Palavras-chave: dc.subject | Grupos gerado por autômatos | - |
Palavras-chave: dc.subject | Grupos autossimilares | - |
Palavras-chave: dc.subject | Grupos finitos por estado | - |
Título: dc.title | Produto entrelaçado como subgrupo de automata-grupo | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB - Rep. 1 |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: