
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Bastos, Saulo B. | - |
| Autor(es): dc.creator | Cajueiro, Daniel Oliveira | - |
| Data de aceite: dc.date.accessioned | 2025-03-18T18:51:04Z | - |
| Data de disponibilização: dc.date.available | 2025-03-18T18:51:04Z | - |
| Data de envio: dc.date.issued | 2020-12-22 | - |
| Data de envio: dc.date.issued | 2020-12-22 | - |
| Data de envio: dc.date.issued | 2020-11-09 | - |
| Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/39776 | - |
| Fonte completa do material: dc.identifier | https://doi.org/10.1038/s41598-020-76257-1 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/957277 | - |
| Descrição: dc.description | We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notifcation of the real numbers of infected people and the timely introduction of social distancing policies to fatten the spread of the disease. We use two variations of the SIR model and we include a parameter that comprises the efects of social distancing measures. Short and long term forecasts show that the social distancing policy imposed by the government is able to fatten the pattern of infection of the COVID-19. However, our results also show that if this policy does not last enough time, it is only able to shift the peak of infection into the future keeping the value of the peak in almost the same value. Furthermore, our long term simulations forecast the optimal date to end the policy. Finally, we show that the proportion of asymptomatic individuals afects the amplitude of the peak of symptomatic infected, suggesting that it is important to test the population. | - |
| Descrição: dc.description | Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE) | - |
| Descrição: dc.description | Departamento de Economia (FACE ECO) | - |
| Formato: dc.format | application/pdf | - |
| Publicador: dc.publisher | Springer Nature | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | Open Access - This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2020 | - |
| Palavras-chave: dc.subject | Covid-19 - Brasil | - |
| Palavras-chave: dc.subject | Modelos matemáticos | - |
| Título: dc.title | Modeling and forecasting the early evolution of the Covid‑19 pandemic in Brazil | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB - Rep. 1 | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: