
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Figueiredo, Giovany de Jesus Malcher | - |
| Autor(es): dc.creator | Carlos, Romulo Diaz | - |
| Data de aceite: dc.date.accessioned | 2025-03-18T18:15:40Z | - |
| Data de disponibilização: dc.date.available | 2025-03-18T18:15:40Z | - |
| Data de envio: dc.date.issued | 2024-08-08 | - |
| Data de envio: dc.date.issued | 2024-08-08 | - |
| Data de envio: dc.date.issued | 2024-08-08 | - |
| Data de envio: dc.date.issued | 2024-01-24 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/49674 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/945345 | - |
| Descrição: dc.description | Tese (doutorado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2024. | - |
| Descrição: dc.description | Nesta tese, estudaremos existência e multiplicidade de soluções para a seguinte classe de problemas: (Pi) ∆2u ± ∆pu + V (x)u = f(u) + β|u| 2∗∗−2u in Ω, u ∈ H2 ∩ H1 0 (Ω), onde (Pi) (i = 1, 2, 3) correspondem aos três problemas considerados nos capítulos 1-3, respectivamente, Ω ⊂ R N é um domínio suave, no caso β = 0 obtemos 2 < p < 2 ∗ = 2N N−2 , para N ≥ 3 e o caso β = 1 consideramos 2∗∗ = 2N N−4 para N ≥ 5. O Capítulo 1 é dedicado a provar um resultado de existência de soluções para o problema (P1) quando V = 0 e β = 0, onde Ω ⊂ R 4 é um domínio com fronteira suave, 2 < p < 4 e f é uma função contínua superlinear com crescimento exponencial subcrítico ou crítico. Aplicamos o método de Nehari para provar o resultado principal. No Capítulo 2 é dedicado a provar a existência e multiplicidade de soluções para o problema (P2) quando V = 0 e β ∈ {0, 1}, onde Ω ⊂ R N é um domínio limitado e suave e f é uma função contínua. Mostramos a existência e multiplicidade de soluções não triviais usando técnicas de minimização na variedade de Nehari, Teorema de Passo da Montanha e Teoria do Gênero. No Capítulo 3 é dedicado a provar a existência de uma solução de estado fundamental para o problema (P3) quando β ∈ {0, 1}. Aqui V e f são funções contínuas com V sendo periódica ou assintótica ao infinito. A função f tem crescimento subcrítico ou critico. | - |
| Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF). | - |
| Descrição: dc.description | In this thesis, we study the existence and multiplicity of solutions for the following class of problems (Pi) ∆2u ± ∆pu + V (x)u = f(u) + β|u| 2∗∗−2u in Ω, u ∈ H2 ∩ H1 0 (Ω), where (Pi) (i = 1, 2, 3) correspond to the three problems we considered in Chapters 1-3, respectively, Ω ⊂ R N is a smooth domain, in the case β = 0 we get 2 < p < 2 ∗ = 2N N−2 , for N ≥ 3 and the case β = 1 we consider 2∗∗ = 2N N−4 for N ≥ 5. The Chapter 1 is devoted to existence result of solutions for the problem (P1) when V = 0 and β = 0, where Ω ⊂ R 4 is a smooth bounded domain, 2 < p < 4 and f is a superlinear continuous function with exponential subcritical or critical growth. We apply the Nehari manifold method to prove the main results. In Chapter 2 we establish an existence and multiplicity of solutions for the problem (P2) when V = 0 and β ∈ {0, 1}, where Ω ⊂ R N is a bounded and smooth domain and f is a continuous function. In this chapter, we show the existence and multiplicity of nontrivial solutions by using minimization technique on the Nehari manifold, the Mountain Pass Theorem and Genus theory. In Chapter 3 is concerned with the existence of a ground state solution for the problem (P3) when β ∈ {0, 1}. Here V and f are continuous functions with V being either periodic or asymptotic at infinity to a periodic function. The function f has subcritical or critical growth. | - |
| Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
| Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
| Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | en | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
| Palavras-chave: dc.subject | Equação de Kirchhoff | - |
| Palavras-chave: dc.subject | Crescimento exponencial crítico | - |
| Palavras-chave: dc.subject | Métodos variacionais | - |
| Título: dc.title | The study of elliptic Kirchhoff-Boussinesq type nonlinear problems | - |
| Título: dc.title | O estudo de problemas elípticos do tipo Kirchhoff-Boussinesq não linear | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB - Rep. 1 | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: