
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Tenenblat, Keti | - |
| Autor(es): dc.creator | Leandro, Bianka Carneiro | - |
| Data de aceite: dc.date.accessioned | 2025-03-18T17:38:40Z | - |
| Data de disponibilização: dc.date.available | 2025-03-18T17:38:40Z | - |
| Data de envio: dc.date.issued | 2011-05-26 | - |
| Data de envio: dc.date.issued | 2011-05-26 | - |
| Data de envio: dc.date.issued | 2011-05-26 | - |
| Data de envio: dc.date.issued | 2010-09-22 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/8043 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/932672 | - |
| Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2010. | - |
| Descrição: dc.description | Consideramos o espaço pseudo-Euclidiano (Rn, g), com coordenadas x = (x1, ..., xn), n _ 3, e gij = _ij"i, "i = ±1. Seja T um tensor simétrico de ordem 2, definido por T = nXi,j=1 "jFij(xk)dxi dxj , onde k ´e fixo, "jFij(xk) = "iFji(xk), 8i, j tais que i 6= j e para j0 fixo, Fij(xk) = cij , 8i, j tais que i, j, j0 s˜ao distintos, com cij 2 R. Além disso, assumimos que existem um intervalo aberto I _ R e l0 6= j0 tais que F0 l0j0(xk) 6= 0, 8xk 2 I. Obtemos condições necessrias e suficientes para que tal tensor admita métrica ¯g, conforme a g, que resolva a equação do tensor de Ricci, Ric ¯g = T. _________________________________________________________________________________ ABSTRACT | - |
| Descrição: dc.description | We consider the pseudo-Euclidean space (Rn, g), with coordinates x = (x1, ..., xn), n _ 3, and gij = _ij"i. Let T be a symmetric tensor of order 2, defined by T = nXi,j=1 "jFij(xk)dxidxj , where k is fixed, "jFij(xk) = "iFji(xk), 8i, j such that i 6= j and for j0 fixed, Fij(xk) = cij , 8i, j such that i, j, j0 are distinct, with cij 2 R. Moreover, we assume that there is an open interval I _ R and l0 6= j0 such that F0 l0j0(xk) 6= 0, 8xk 2 I. We provide necessary and sufficient conditions for such a tensor to admit a metric ¯g, conformal to g, that solves the Ricci tensor equation, Ric ¯g = T. | - |
| Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
| Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
| Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Palavras-chave: dc.subject | Geometria diferencial | - |
| Palavras-chave: dc.subject | Geometria euclidiana | - |
| Palavras-chave: dc.subject | Equações diferenciais | - |
| Título: dc.title | Uma classe de soluções para a equação de Ricci, no espaço pseudo-Euclidiano | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB - Rep. 1 | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: