Modeling mortality based on pollution and temperature using a new Birnbaum–Saunders autoregressive moving average structure with regressors and related-sensors data

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSaulo, Helton-
Autor(es): dc.creatorSouza, Rubens Batista de-
Autor(es): dc.creatorVila, Roberto-
Autor(es): dc.creatorAykroyd, Robert G.-
Data de aceite: dc.date.accessioned2024-10-23T16:41:16Z-
Data de disponibilização: dc.date.available2024-10-23T16:41:16Z-
Data de envio: dc.date.issued2022-02-11-
Data de envio: dc.date.issued2022-02-11-
Data de envio: dc.date.issued2020-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/42870-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/s21196518-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-4467-8652-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-1854-5805-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0003-1073-0114-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0003-4755-3270-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0003-3700-0816-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/914706-
Descrição: dc.descriptionEnvironmental agencies are interested in relating mortality to pollutants and possible environmental contributors such as temperature. The Gaussianity assumption is often violated when modeling this relationship due to asymmetry and then other regression models should be considered. The class of Birnbaum–Saunders models, especially their regression formulations, has received considerable attention in the statistical literature. These models have been applied successfully in different areas with an emphasis on engineering, environment, and medicine. A common simplification of these models is that statistical dependence is often not considered. In this paper, we propose and derive a time-dependent model based on a reparameterized Birnbaum–Saunders (RBS) asymmetric distribution that allows us to analyze data in terms of a time-varying conditional mean. In particular, it is a dynamic class of autoregressive moving average (ARMA) models with regressors and a conditional RBS distribution (RBSARMAX). By means of a Monte Carlo simulation study, the statistical performance of the new methodology is assessed, showing good results. The asymmetric RBSARMAX structure is applied to the modeling of mortality as a function of pollution and temperature over time with sensor-related data. This modeling provides strong evidence that the new ARMA formulation is a good alternative for dealing with temporal data, particularly related to mortality with regressors of environmental temperature and pollution.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherMDPI-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY).-
Palavras-chave: dc.subjectDistribuições Birnbaum-Saunders-
Palavras-chave: dc.subjectMonte Carlo, Método de-
Palavras-chave: dc.subjectSoftware-
Palavras-chave: dc.subjectLinguagem de programação R-
Título: dc.titleModeling mortality based on pollution and temperature using a new Birnbaum–Saunders autoregressive moving average structure with regressors and related-sensors data-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.