Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Lima, Igor dos Santos | - |
Autor(es): dc.creator | Silva, Millena Andrade da | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:33:31Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:33:31Z | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2023-08-10 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/49664 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/911419 | - |
Descrição: dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2023. | - |
Descrição: dc.description | Neste trabalho estudamos os grupos em que todo subgrupo tem defeito subnormal até 2. Dividimos nossa investigação no estudo dos grupos de defeito 1 e de defeito 2. Para os grupos de defeito 1, ditos grupos de Dedekind, nosso principal objetivo é demonstrar o Teorema de Dedekind-Baer que nos dará uma classificação dos grupos de Dedekind não abelianos. Para os grupos de defeito 2, apresentamos as classes S ,A e T e estudamos as relações de continência entre as mesmas. Com base em Heineken e Mahdavianary, mostraremos ainda que os grupos nessas classes são nilpotentes com classe de nilpotência menor ou igual a 3. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). | - |
Descrição: dc.description | In this work we study groups in which every subgroup has subnormal defect less than or equal to 2. We divide our investigation into the study of groups with defect 1 and 2. For groups with defect 1, called Dedekind groups, our main objective is to prove the Dedekind-Baer Theorem that gives us a classification of non-abelian Dedekind groups. For groups with defect 2, we present the classes S ,A and T and study the relations between them. Based in Mahdavianary and Heineken, we also show that groups in these classes are nilpotent with nilpotency class less than or equal to 3. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Comutadores | - |
Palavras-chave: dc.subject | Nilpotência | - |
Título: dc.title | Grupos tais que todo subgrupo tem defeito subnormal até 2 | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: