Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Patrão, Mauro | - |
Autor(es): dc.creator | Souza, André Caldas de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:28:36Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:28:36Z | - |
Data de envio: dc.date.issued | 2010-03-11 | - |
Data de envio: dc.date.issued | 2010-03-11 | - |
Data de envio: dc.date.issued | 2009 | - |
Data de envio: dc.date.issued | 2009 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/3963 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/909446 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. | - |
Descrição: dc.description | Introduzimos os conceitos de recorrência, recorrência por cadeias e decomposição de Morse para analisar os comportamentos recorrente e transiente de um fluxo topológico num espaço métrico compacto. A partir dessas ferramentas, fornecemos uma descrição precisa do comportamento recorrente de um fluxo linear em um espaço projetivo através da sua decomposição de Jordan. O resultado principal diz que o conjunto recorrente por cadeias coincide com os pontos fixos da componente de Jordan hiperbólica e o conjunto recorrente coincide com a interseção dos pontos fixos das componentes de Jordan hiperbólica e unipotente. Essa descrição e estendida para um fluxo linear induzido em uma órbita projetiva compacta de um subgrupo de Lie semi-simples linear qualquer. O ponto chave é mostrar que as órbitas projetivas compactas são invariantes pelas componentes de Jordan do fluxo. Exemplos de órbitas projetivas compactas incluem as grasmanianas e as variedades flag. | - |
Descrição: dc.description | We introduce the concepts of recurrence, chain recurrence and Morse decomposition in order to analyze the recurrent and transient behavior of a topological flow in a compact metric space. Using these tools, we provide a precise description of the recurrent behavior of a linear flow over a projective space by means of it’s Jordan decomposition. The main result states that the chain recurrent set is precisely the fix points of the hiperbolic Jordan component, and the recurrent set is the intersection of the fixed points of the hiperbolic and unipotent Jordan components. This characterization is further extended to a linear flow induced in a projective compact orbit of an arbitrary semisimple linear Lie subgroup. The key step is showing that the projective compact orbits are invariant by the action of the Jordan components of the flow. Examples of projective compact orbits include the grassmanians and the flag varieties. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Lie, Álgebra de | - |
Palavras-chave: dc.subject | Teoria de Morse | - |
Título: dc.title | Dinâmica em órbitas projetivas compactas e a decomposição de Jordan | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: