Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Rocha Filho, Tarcísio Marciano da | - |
Autor(es): dc.creator | Souza, Lydiane Ferreira de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:23:09Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:23:09Z | - |
Data de envio: dc.date.issued | 2021-06-10 | - |
Data de envio: dc.date.issued | 2021-06-10 | - |
Data de envio: dc.date.issued | 2021-06-10 | - |
Data de envio: dc.date.issued | 2020-12-14 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/41144 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/907098 | - |
Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2020. | - |
Descrição: dc.description | Os sistemas de longo alcance são caracterizados por um potencial decaindo a longas dis- tâncias com r −α , de modo que α ≤ d e d é a dimensão do sistema. Neste trabalho estudamos características pouco usuais do sistema gravitacional unidimensional, este sis- tema consiste de folhas infinitas livres para se mover no eixo x, e para tanto analisamos as propriedades ergódicas nos estados homogêneo e inomogêneo. Também investigamos, através das equações cinéticas, a dinâmica dos sistemas de longo alcance e do sistema gra- vitacional unidimensional. As equações que descrevem a dinâmica dos sistemas de longo alcance homogêneos e unidimensionais, equação de Landau e Balescu-Lenard, têm termo colisional nulo, sendo necessário considerar termos de ordem superior a estes para poder- mos concluir como ocorre a evolução destes sistemas. Obtivemos uma equação cinética geral, que descreve a dinâmica dos sistemas homogêneos, unidimensiais e com potencial periódico. Vimos para o estado homogêneo dos sistema unidimensional que o termo colisi- onal da equação cinética é nulo e através de simulações constatamos que a distribuição de partículas permanece constante, indicando um termo colisional nulo se considerarmos um limite adequado, logo o sistema é dito não ergódico. Já para o estado inomogêneo vimos que é ergódico, além de constatar que o termo de ordem 1/N da equação de Balescu- Lenard em variáveis ângulo-ação é nulo. Portanto para cada um dos estados do sistema gravitacional unidimensional há uma dinâmica diferente. | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). | - |
Descrição: dc.description | Long-range systems interact by a potential decaying over long distances with r −α , so that α ≤ d and d is the size of the system. We study unusual features of the one-dimensional gravitational system, this system consists of infinite free sheets to move on the x axis, and for that, we analyze the ergodic properties in the homogeneous and inhomogeneous states. We also studied, through kinetic equations, the dynamics of long-range systems and the one-dimensional gravitational system. The equations that describe the dynamics of homogeneous and one-dimensional long-range systems, the Landau and Balescu-Lenard equation, have a vanish collisional term, and it is necessary to consider terms of a higher order than these to conclude how these systems evolve. We obtained a general kinetic equation, which describes the dynamics of homogeneous, one-dimensional systems with periodic potential. We saw for the homogeneous state of the one-dimensional system that the collisional term of the kinetic equation is null and verify through simulations, we found that the particle distribution remains constant, indicating a vanish collisional term if we consider an adequate limit, so the system is said to be non-ergodic. As for the inhomogeneous state, we saw that it is ergodic, in addition to verifying that the order term 1/N of the Balescu-Lenard equation in angle-action variables vanish. So for each of the states of the one-dimensional gravitational system, there is a different dynamic. | - |
Descrição: dc.description | Instituto de Física (IF) | - |
Descrição: dc.description | Programa de Pós-Graduação em Física | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Sistemas de longo alcance | - |
Palavras-chave: dc.subject | Equações cinéticas | - |
Palavras-chave: dc.subject | Sistema gravitacional unidimensional | - |
Título: dc.title | Teoria cinética de sistemas gravitacionais unidimensionais | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: