Mild steel GMA welds microstructural analysis and estimation using sensor fusion and neural network modeling

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCaio, Leandro Bruno Alves-
Autor(es): dc.creatorSilva, Alysson Martins Almeida-
Autor(es): dc.creatorAlvarez Bestard, Guillermo-
Autor(es): dc.creatorVieira, Lais Soares-
Autor(es): dc.creatorCarvalho, Guilherme Caribé de-
Autor(es): dc.creatorAlfaro, Sadek Crisóstomo Absi-
Data de aceite: dc.date.accessioned2024-10-23T16:21:49Z-
Data de disponibilização: dc.date.available2024-10-23T16:21:49Z-
Data de envio: dc.date.issued2021-09-02-
Data de envio: dc.date.issued2021-09-02-
Data de envio: dc.date.issued2021-08-13-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/42003-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/s21165459-
Fonte completa do material: dc.identifierhttps://orcid.org/ 0000-0001-6659-441X-
Fonte completa do material: dc.identifierhttps://orcid.org/ 0000-0002-7426-0687-
Fonte completa do material: dc.identifierhttps://orcid.org/ 0000-0002-0361-0555-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/906520-
Descrição: dc.descriptionThis study aims at evaluating the efficiency of sensor fusion, based on neural networks, to estimate the microstructural characteristics of both the weld bead and base material in GMAW processes. The weld beads of AWS ER70S-6 wire were deposited on SAE 1020 steel plates varying welding voltage, welding speed, and wire-feed speed. The thermal behavior of the material during the process execution was analyzed using thermographic information gathered by an infrared camera. The microstructure was characterized by optical (confocal) microscopy, scanning electron microscopy, and X-ray Diffraction tests. Finally, models for estimating the weld bead microstructure were developed by fusing all the information through a neural network modeling approach. A R value of 0.99472 was observed for modelling all zones of microstructure in the same ANN using Bayesian Regularization with 17 and 15 neurons in the first and second hidden layers, respectively, with 4 training runs (which was the lowest R value among all tested configurations). The results obtained prove that RNAs can be used to assist the project of welded joints as they make it possible to estimate the extension of HAZ.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherMDPI-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
Palavras-chave: dc.subjectGMAW-
Palavras-chave: dc.subjectEstimativa de microestrutura-
Palavras-chave: dc.subjectRedes neurais-
Palavras-chave: dc.subjectFusão de sensores-
Título: dc.titleMild steel GMA welds microstructural analysis and estimation using sensor fusion and neural network modeling-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.