Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Cajueiro, Daniel Oliveira | - |
Autor(es): dc.creator | Silva, Patrick Pantoja da | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:21:03Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:21:03Z | - |
Data de envio: dc.date.issued | 2020-07-01 | - |
Data de envio: dc.date.issued | 2020-07-01 | - |
Data de envio: dc.date.issued | 2020-07-01 | - |
Data de envio: dc.date.issued | 2020-03-06 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/38688 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/906176 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Departamento de Economia, Programa de Pós-Graduação em Ciências Econômicas, 2020. | - |
Descrição: dc.description | Utilizando técnicas de aprendizado de máquina, este estudo busca treinar um algoritmo a identificar profissionais inadimplentes que possuam maior potencial de sair da inadimplência utilizando como base para o modelo os padrões encontrados entre profissionais inscritos e ativos no Conselho de Enfermagem do Rio Grande do Sul que encerraram o ano de 2017 inadimplentes e durante o ano seguinte saíram da inadimplência. | - |
Descrição: dc.description | Using machine learning techniques, this work aims to train an algorithm to identify defaulting professionals who have a greater potential to get out of default, using as a basis for the model or the standards found among registered and active professionals in the Nursing Council of Rio Grande do Sul who joined the year 2017 in default and during the year following them to be in default. | - |
Descrição: dc.description | Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas (FACE) | - |
Descrição: dc.description | Departamento de Economia (FACE ECO) | - |
Descrição: dc.description | Programa de Pós-Graduação em Economia | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Aprendizagem de máquina | - |
Palavras-chave: dc.subject | Conselho Regional de Enfermagem do Rio Grande do Sul - COREN-RS | - |
Palavras-chave: dc.subject | Inadimplentes | - |
Palavras-chave: dc.subject | Perfil da inadimplência | - |
Título: dc.title | Aprendizado de máquina na análise do perfil da inadimplência no Conselho Regional de Enfermagem do Rio Grande do Sul | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: