Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | University of São Paulo, Department of Exact Sciences | - |
Autor(es): dc.contributor | University of São Paulo, Department of Exact Sciences | - |
Autor(es): dc.contributor | Federal University of Pernambuco, Department of Statistics | - |
Autor(es): dc.contributor | University of Brasilia, Department of Statistics | - |
Autor(es): dc.creator | Rodrigues, Gabriela Maria | - |
Autor(es): dc.creator | Ortega, Edwin M. M. | - |
Autor(es): dc.creator | Cordeiro, Gauss M. | - |
Autor(es): dc.creator | Vila Gabriel, Roberto | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:16:55Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:16:55Z | - |
Data de envio: dc.date.issued | 2023-09-22 | - |
Data de envio: dc.date.issued | 2023-09-22 | - |
Data de envio: dc.date.issued | 2022-10-05 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/46534 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.3390/math10193644 | - |
Fonte completa do material: dc.identifier | https://orcid.org/0000-0002-1985-8141 | - |
Fonte completa do material: dc.identifier | https://orcid.org/0000-0003-3999-7402 | - |
Fonte completa do material: dc.identifier | https://orcid.org/0000-0002-3052-6551 | - |
Fonte completa do material: dc.identifier | https://orcid.org/0000-0003-1073-0114 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/904385 | - |
Descrição: dc.description | This work aims to study the factors that increase the risk of death of hospitalized patients diagnosed with COVID-19 through the odd log-logistic regression model for censored data with two systematic components, as well as provide new mathematical properties of this distribution. To achieve this, a dataset of individuals residing in the city of Campinas (Brazil) was used and simulations were performed to investigate the accuracy of the maximum likelihood estimators in the proposed regression model. The provided properties, such as stochastic representation, identifiability, and moments, among others, can help future research since they provide important information about the distribution structure. The simulation results revealed the consistency of the estimates for different censoring percentages and show that the empirical distribution of the modified deviance residuals converge to the standard normal distribution. The proposed model proved to be efficient in identifying the determinant variables for the survival of the individuals in this study, which can help to find more opportune treatments and medical interventions. Therefore, the new model can be considered an interesting alternative for future works that evaluate censored lifetimes | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Estatística (IE EST) | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | MDPI | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | (CC BY) Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | - |
Palavras-chave: dc.subject | Estatística matemática | - |
Palavras-chave: dc.subject | Covid-19 | - |
Título: dc.title | An extended weibull regression for censored data : application for COVID-19 in Campinas, Brazil | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: