Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Silva, Cibele Queiroz da | - |
Autor(es): dc.creator | Lima, Alex Felipe Rodrigues | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:10:09Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:10:09Z | - |
Data de envio: dc.date.issued | 2017-04-12 | - |
Data de envio: dc.date.issued | 2017-04-12 | - |
Data de envio: dc.date.issued | 2017-04-12 | - |
Data de envio: dc.date.issued | 2016-12-05 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/23244 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.26512/2016.12.D.23244 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/901492 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2016. | - |
Descrição: dc.description | O interesse principal do trabalho está na proposta de uma abordagem Bayesiana adequada para a estimação dos parâmetros das distribuições Beta BurrXII (BBXII) e Beta Weibull Exponenciada (BEW). Essas distribuições pertencem a classe de distribuições Beta Generalizadas (Beta-G). Sendo a distribuição Beta uma parte integrante da distribuições BBXII e da BEW, constatou-se que a sua reparametrização, proposta por Ferrari e Cribari-Neto (2004), fornece vantagens computacionais para a convergência das estimativas Bayesianas. Foram propostas duas abordagens Bayesianas para a estimação dos parâmetros da distribuição BBXII e uma abordagem para a distribuição BEW. Para a BBXII, a primeira abordagem considera prioris e funções geradoras de candidatos Beta, para o parâmetro, e Qui-Quadrado para os demais parâmetros. A segunda abordagem considera transforma ções logit para e log para os demais parâmetros. As prioris e funções geradoras de candidatos adotadas foram Beta para e Gama para os demais parâmetros. Nessa abordagem, obtem-se um vetor de candidatos Gaussianos de acordo com uma adaptação da proposta Gaussiana de Gray(2001). Para a BEW, considerou-se as transformações, prioris e funções geradoras de candidatos equivalentes a segunda proposta da BBXII, diferindo na obtenção de candidatos, que somente puderam ser obtidos de forma univariada para cada parâmetro. | - |
Descrição: dc.description | The aim of this work is the development of an adequate Bayesian approach for the estimation of the parameters of the Beta BurrXII (BBXII) and Beta Exponentiated Weibull (BEW) distributions. Both of these distributions belong to the Beta Generalized Class (Beta-G). Since the Beta distribution is used in the construction of the BBXII and the BEW distribution, It was observed that the Beta distribution reparametrization proposed by Ferrari and Cribari-Neto (2004) provides computational advantages with respect to the convergence of the Bayesian estimates. Two Bayesian approaches were proposed to the estimation of the parameters of the BBXII distribution and one approach was proposed to the BEW one.In the case of the BBXII distribution, a rst approach incorporates both beta priors and beta proposal distributions for the parameters and both Chi-square priors and Chi-square proposal distributions for the other parameters. In the second approach it was applied a set of transformations to the original parameters in order to make possible the use of Gaussian approximations. It was applied a logit transformation to and a log transformation to the others parameters. The proposal distributions were set up according to an adaptation of the Gaussian approaches proposed by Gray (2001). In the case of the BEW distribution it was also used Gaussian approximations to the original parameters, with the di erence that for the proposals it only possible the use of univariate distributions. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Estatística (IE EST) | - |
Descrição: dc.description | Programa de Pós-Graduação em Estatística | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Distribuição beta | - |
Palavras-chave: dc.subject | Distribuição (Probabilidades) | - |
Palavras-chave: dc.subject | Distribuição Weibull | - |
Título: dc.title | As Distribuições Beta Burr XII e Beta Weibull Exponenciada : uma abordagem Bayesiana | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: