Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Godinho, Hemar Teixeira | - |
Autor(es): dc.creator | Miranda, Bruno de Paula | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:08:50Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:08:50Z | - |
Data de envio: dc.date.issued | 2018-07-09 | - |
Data de envio: dc.date.issued | 2018-07-09 | - |
Data de envio: dc.date.issued | 2018-07-04 | - |
Data de envio: dc.date.issued | 2018-03-09 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/32193 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/900942 | - |
Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. | - |
Descrição: dc.description | Em 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0. | - |
Descrição: dc.description | In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Formas diagonais | - |
Palavras-chave: dc.subject | Extensões não rami cadas | - |
Palavras-chave: dc.subject | Conjectura de Artin | - |
Título: dc.title | Diagonal forms over the unramified quadratic extension of Q2 | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: