Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | wendy_fda@hotmail.com | - |
Autor(es): dc.creator | Almeida, Wendy Fernanda de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T16:05:29Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T16:05:29Z | - |
Data de envio: dc.date.issued | 2022-09-02 | - |
Data de envio: dc.date.issued | 2022-09-02 | - |
Data de envio: dc.date.issued | 2022-09-02 | - |
Data de envio: dc.date.issued | 2022-06-24 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/44672 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/899568 | - |
Descrição: dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2022. | - |
Descrição: dc.description | Neste trabalho apresentaremos um estudo sobre a classe de equações bi-harmônicas não lineares com p-Laplaciano, que foram investigadas pelos autores Juntao Sun, Jifeng Chu, Tsungfang Wu no trabalho [15], sobre o seguinte problema: ∆2u − β∆pu + λV (x)u = f(x, u) ∈ R N , u ∈ H2 (R N ), (1) onde N ≥ 1, β ∈ R, λ > 0 são parâmetros e ∆pu = div(|∇u| p−2∇u) com p ≥ 2. Diferente de outros artigos que tratam esse problema, os autores substituíram o Laplaciano com p-Laplaciano e permitiram que β seja negativo. Sobre adequadas hipóteses em V (x) e f(x, u), foi possível obter a existência e multiplicidade de soluções não triviais para λ grande o suficiente. A prova se baseia em métodos variacionais assim como na desigualdade de Gagliardo-Nirenberg. | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). | - |
Descrição: dc.description | In this work we will present a study on the class of nonlinear biharmonic equations with pLaplacian, which were investigated by the authors Juntao Sun, Jifeng Chu, Tsung-fang Wu at work [15] on the following problem: ∆2u − β∆pu + λV (x)u = f(x, u) ∈ R N , u ∈ H2 (R N ), (2) where N ≥ 1, β ∈ R, λ > 0 are parameter and ∆pu = div(|∇u| p−2∇u) with p ≥ 2. Unlike other papers dealing with this problem, the authors replaced the Laplacian with p-Laplacian and allowed β to be negative. Under suitable assumptions in V (x) and f(x, u), it was possible to obtain the existence and multiplicity of non-trivial solutions for λ large enough. The proof relies on variational methods and Gagliardo-Nirenberg inequality | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Equações biharmonicas | - |
Palavras-chave: dc.subject | p-Laplaciano | - |
Palavras-chave: dc.subject | Métodos variacionais | - |
Palavras-chave: dc.subject | Desigualdade de Gagliardo-Nirenberg | - |
Título: dc.title | Existência e multiplicidade de soluções não triviais para um problema elíptico envolvendo os operadores bi-harmônico e o p-Laplaciano | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: