
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Sobrinho, Daniele Nantes | - |
| Autor(es): dc.creator | Delboni, Bruno de Assis | - |
| Data de aceite: dc.date.accessioned | 2024-10-23T16:02:43Z | - |
| Data de disponibilização: dc.date.available | 2024-10-23T16:02:43Z | - |
| Data de envio: dc.date.issued | 2017-08-17 | - |
| Data de envio: dc.date.issued | 2017-08-17 | - |
| Data de envio: dc.date.issued | 2017-08-17 | - |
| Data de envio: dc.date.issued | 2017-03-06 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/24161 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.26512/2017.03.D.24161 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/898455 | - |
| Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. | - |
| Descrição: dc.description | Esta dissertação tem como foco o estudo do problema de unificação módulo uma teoria equacional cuja assinatura contém um operador binário que satisfaz as identidades Associatividade, Comutatividade, Unidade e Nilpotência (ACUN), e que pode ou não conter um operador unário que satisfaz a identidade de homomorfismo (ACUNh), que é a teoria equacional do operador , amplamente utilizado em diversas ferramentas criptográficas, como MAUDE-NPA[10] que utiliza uma encriptação de grupos abelianos, incluindo ( ou exclusivo ), exponenciação e encriptação homomórfica. Primeiro apresentaremos alguns critérios para existência de soluções para problemas de ACUN(h)-unificação elementar com constantes que consiste em associar o problema de unificação à um sistema de equações lineares cujos coeficientes são elementos de ou , dependendo se o homomorfismo é ou não considerado. Segundo, apresentaremos um algoritmo para resolver problemas de ACUN(h)- unificação geral que retorna sempre um conjunto completo de unificadores. Finalmente, apresentaremos o estudo de um novo paradigma de unificação, a dizer, \emph{unificação assimétrica}, que consiste de obter unificadores de um problema de unificação com a propriedade de preservar formas normais do lado direito de cada equação de com relação a um sistema de reescrita convergente e coerente módulo uma teoria equacional . No caso particular da teoria equacional ACUN construiremos um algoritmo de conversão de ACUN-unificadores para ACUN-unificadores assimétricos. | - |
| Descrição: dc.description | This dissertation focuses on the study of unification problems modulo an equational theory whose signature contains a binary operator , which satisfies the identities of Associativity, Commutativity, Unity and Nilpotence (ACUN), and which may or not contain a unary operator satisfying the homomorphism identity (ACUNh), which is the equational theory for the operator XOR, Widely used on many cryptographic tools, like MAUDE[10], which uses group encryption, including XOR ( exclusive or ), exponentiation and homomorphic encryption. First we will present some criteria to the existence of solutions for elementary with constants ACUN(h)-unification problems which consist of associating a unification problem to a linear equation system whose coefficients are elements of or , depending one we are considering homomorphism or not. Second, we will present an algorithm to solve general ACUNh-unification problems which always returns a complete set of most general unifiers. Finally, we will present the study of a new unification paradigm, to say so, asymmetric unification, which consist of obtaining unifiers from the unification problem , with the property of preserving the normal form from of the right hand side of each equation in , considering a convergent and coherent rewriting system. In the particular case of the equational theory ACUN, we will also present an algorithm which takes as input ACUN-unifiers and outputs ACUN-asymmetric unifiers. | - |
| Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
| Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
| Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
| Palavras-chave: dc.subject | Álgebra abstrata | - |
| Palavras-chave: dc.subject | Unificação assimétrica | - |
| Palavras-chave: dc.subject | Solução de problemas | - |
| Palavras-chave: dc.subject | Teoria da computação | - |
| Título: dc.title | Unificação assimétrica módulo operadores nilpotentes com homomorfismo | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: