Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Sidki, Said Najati | - |
Autor(es): dc.creator | Ramos, Flávia Ferreira | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:53:35Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:53:35Z | - |
Data de envio: dc.date.issued | 2009-12-04 | - |
Data de envio: dc.date.issued | 2009-12-04 | - |
Data de envio: dc.date.issued | 2007 | - |
Data de envio: dc.date.issued | 2007 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/2543 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/894725 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2007. Dissertação parcial. | - |
Descrição: dc.description | Dado um endomorfismo virtual de um grupo G conseguimos uma representação fechada por estados (ou auto-similar) de G na árvore m-ária uni-raiz, para um conveniente número natural m. Propriedades específicas são extraídas no caso em que G é nilpotente finitamente gerado livre-de-torção. Com hipóteses adicionais sobre G, obtemos limitações para o comprimento derivado e para a classe de nilpotência de G em função de m. Em nosso trabalho buscamos também resolver o problema do isomorfismo para grupos nilpotentes de classe 2 finitamente gerados e livres-de-torção, chamados de T2-grupos. Uma questão que surge naturalmente é se os quocientes finitos de um certo grupo o determinam a menos de isomorfismos. A resposta é negativa e os primeiros contra-exemplos, abordados no Cap. 1, surgem com grupos nilpotentes de classe 2. Finalmente, através de certos invariantes numéricos, apresentamos uma completa classificação para certas subclasses de T2-grupos. _______________________________________________________________________________________ ABSTRACT | - |
Descrição: dc.description | Given a virtual endomorphism of a group G we have a state-closed (or self-similar) representation of G on a 1-rooted regular m-ary tree, for a convenient natural number m. Specific properties are extracted in case G is finitely generated torsion-free nilpotent group. Under additional hypothesis on G, we obtain bounds for the derived length and nilpotent class of G in function of m. In our work, we also investigate the solution for the isomorphism problem for finitely generated torsion-free nilpotent groups of class 2, called the T2-groups. A question that naturally arises is if the set of finite quotients of certain group determines it up to isomorphism. The answer is negative and the first counterexamples, developed in Chap. 1, arise with the nilpotent groups of class 2. Finally, through certain numerical invariants, we present a complete classification for certain subclasses of T2-groups. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Isomorfismo (Matemática) | - |
Título: dc.title | Um estudo de grupos nilpotentes : o problema do isomorfismo para grupos de classe 2 : endomorfismos virtuais | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: