Detecção de tumores cerebrais utilizando redes neurais convolucionais guiadas por mapas de saliência

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorFarias, Mylène Christine Queiroz de-
Autor(es): dc.creatorOliveira, Paulo Henrique de Castro-
Data de aceite: dc.date.accessioned2024-10-23T15:53:15Z-
Data de disponibilização: dc.date.available2024-10-23T15:53:15Z-
Data de envio: dc.date.issued2023-06-15-
Data de envio: dc.date.issued2023-06-15-
Data de envio: dc.date.issued2023-06-15-
Data de envio: dc.date.issued2022-10-30-
Fonte completa do material: dc.identifierhttp://repositorio2.unb.br/jspui/handle/10482/45968-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/894577-
Descrição: dc.descriptionDissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022.-
Descrição: dc.descriptionO processo de diagnóstico de tumores cerebrais realizado por médicos radiologistas com imagens de ressonância magnética (MRI) pode ser, em algumas ocasiões, um procedimento demorado que dure semanas ou meses. Assim, uma análise rápida por meio de um sistema automatizado tem um papel importante em detectar precocemente tumores cerebrais com melhores taxas de acurácia. Por consequência, isso pode ajudar a melhorar as possibilidades de tratamento dos pacientes e otimizar os recursos humanos hospitalares. Sistemas como esse teriam grande utilidade em regiões subdesenvolvidas em termos de saúde pública, onde faltem médicos que possam diagnosticar e avaliar com precisão a gravidade dos tumores cerebrais com MRI. Este trabalho propõe um método para a classificação de tumores cerebrais por meio da pré-seleção da região de tumor. Estimou-se a região de interesse com o uso de algoritmos de atenção visual do tipo bottom-up e, em seguida, as regiões com maiores níveis de energia foram inseridas em uma rede neural que as classificou quanto à existência de tumor cerebral. Com o uso das imagens completas, obteve-se uma acurácia de classificação final de 90,79%, 92,17%, 92,25% e 90,61% com os modelos Resnet18, Resnet34, VGG16 e Alexnet, respectivamente. Pré-selecionando a região de interesse, em vez de usar a imagem inteira, o framework proposto teve uma acurácia de classificação final de 91,88%, 92,51%, 92,71% e 93,19% com os modelos Resnet18, Resnet34, VGG16 e Alexnet, respectivamente. Uma vez que o espaço dimensional da imagem de entrada é reduzido com a exclusão de regiões menos relevantes para o processo classificatório, as redes neurais obtêm melhores métricas de desempenho. Este estudo evidencia a importância dos mapas de saliência para a identificação de regiões tumorais em imagens de ressonância magnética. Adicionalmente, investigou-se o efeito de cinco artefatos de degradação nas métricas de classificação de uma rede neural: ruído Gaussiano, borrado, ringing, contraste e ghosting. Essa análise contou com a geração de 20 níveis de degradação com cada um dos cinco artefatos e registrou os resultados de desempenho de classificação com cada um desses níveis. Concluiu-se que no cenário simulado com os artefatos de ruído Gaussiano, borrado, ringing e constraste houve um decréscimo exponencial das métricas de classificação, ao passo que as alterações ghosting geraram um comportamento aleatório dessas métricas.-
Descrição: dc.descriptionFaculdade de Tecnologia (FT)-
Descrição: dc.descriptionDepartamento de Engenharia Elétrica (FT ENE)-
Descrição: dc.descriptionPrograma de Pós-Graduação em Engenharia Elétrica-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.-
Palavras-chave: dc.subjectAprendizagem de máquina-
Palavras-chave: dc.subjectTumores - detecção-
Palavras-chave: dc.subjectDetecção de tumor cerebral-
Palavras-chave: dc.subjectProcessamento de imagens-
Palavras-chave: dc.subjectMapas de saliência-
Palavras-chave: dc.subjectRedes neurais convolucionais-
Título: dc.titleDetecção de tumores cerebrais utilizando redes neurais convolucionais guiadas por mapas de saliência-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.