Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Brasil, Lourdes Mattos | - |
Autor(es): dc.contributor | Lamas, Janice Magalhães | - |
Autor(es): dc.creator | Elpídio, Fátima Gisele Gomes | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:52:04Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:52:04Z | - |
Data de envio: dc.date.issued | 2012-12-10 | - |
Data de envio: dc.date.issued | 2012-12-10 | - |
Data de envio: dc.date.issued | 2012-12-10 | - |
Data de envio: dc.date.issued | 2012-08-31 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/11783 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/894076 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2012. | - |
Descrição: dc.description | A melhor forma de prevenção e controle do câncer de mama, o segundo tipo de câncer com maior incidência mundial, continua sendo o diagnóstico precoce. A mamografia é considerada o principal método de detecção precoce do câncer de mama. As calcificações (acúmulo de cálcio em regiões da mama) são freqüentemente encontradas em exames de rastreio da mama. A distinção entre calcificações tipicamente benignas e calcificações suspeitas de malignidade é uma tarefa complexa. O sistema Breast Image Reporting and Data System (BI-RADS) normatiza a descrição e o manejo dos achados mamográficos entre os especialistas da área médica. Este trabalho fundamenta-se em técnicas de Processamento Digital de Imagens para realizar a extração de informações morfológicas das calcificações e uma Rede Neural Artificial (RNA) Perceptron Múltiplas Camadas (PMC) para classificar as calcificações analisadas de acordo com a classificação morfológica definida pelo BI-RADS. O desempenho da RNA PMC foi avaliado em um teste controlado com calcificações sintéticas, geradas para simular calcificações reais, e validado com calcificações reais, extraídas de mamografias cedidas pela clínica de estudo. Adicionalmente foi desenvolvido um sistema de Raciocínio Baseado em Casos para indicar a classificação BI-RADS final da mamografia conforme análise das calcificações mamárias. A RNA PMC adotada foi testada usando o algoritmo Backpropagation cujos melhores resultados demonstraram uma convergência rápida da RNA e uma boa generalização do conhecimento, permitindo uma classificação com até 98% de acerto. A avaliação da técnica de RBC foi realizada com testes com a especialista da área e técnicas de validação preditiva. Os resultados obtidos validam que a presente proposta disponibiliza um processo consistente de análise das calcificações mamárias através do uso das técnicas de IA e PDI. _______________________________________________________________________________________ ABSTRACT | - |
Descrição: dc.description | Early diagnosis still represents the best approach to prevent and control breast cancer, the second most frequent form of cancer worldwide. In this context, mamography has been largely used as major method for early disease detection. Calcifications (calcium build-ups) in breast regions are frequently found in breast screening examinations. The distinction between clusters of benign and malignant calcification is a complex task. The BI-RADS system (Breast Image Reporting and Data System) standardizes the description and management of mammographic findings among medical experts. This work is based on techniques Digital Image Processing (DIP) to perform the extraction of morphological information of calcifications and an Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP) to classify calcifications analyzed according to the morphological classification defined by BI-RADS. The performance of MLP ANN was evaluated in a controlled test with synthetic calcifications, generated to simulate real calcifications and validated with real calcifications, extracted from mammograms provided by associated clinical. Additionally it was developed a system of Case Based Reasoning (CBR) to indicate the BI-RADS mammography of breast calcifications according to BI-RADS category most applicable. The ANN MPL adopted was tested using the Backpropagation algorithm whose best results demonstrated a rapid convergence of ANN and a good generalization of knowledge, allowing a rating up to 98% accuracy. The evaluation of CBR technique was performed with tests of medical expert and techniques for predictive validity. The results validate that this proposal provides a consistent process for analyzing breast calcifications through the use of AI techniques and DIP. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Engenharia biomédica - mamas - câncer | - |
Palavras-chave: dc.subject | Processamento de imagens - técnicas digitais | - |
Palavras-chave: dc.subject | Inteligência artificial | - |
Título: dc.title | Sistema de auxílio na avaliação de calcificações mamárias por processamento digital de imagens e inteligência artificial | - |
Título: dc.title | Aid system to evaluation of breast calcification by digital processing of images and artificial intelligence | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: