Lysophosphatidylcholine induces NLRP3 inflammasome-mediated foam cell formation and pyroptosis in human monocytes and endothelial cells

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCorrêa, Rafael-
Autor(es): dc.creatorSilva, Luís Felipe Fonseca-
Autor(es): dc.creatorRibeiro, Dalila Juliana Silva-
Autor(es): dc.creatorAlmeida, Raquel das Neves-
Autor(es): dc.creatorSantos, Igor de Oliveira-
Autor(es): dc.creatorCorrêa, Luís Henrique-
Autor(es): dc.creatorSant'Ana, Lívia Pimentel de-
Autor(es): dc.creatorAssunção, Leonardo Santos-
Autor(es): dc.creatorBozza, Patricia Torres-
Autor(es): dc.creatorMagalhães, Kelly Grace-
Data de aceite: dc.date.accessioned2024-10-23T15:51:25Z-
Data de disponibilização: dc.date.available2024-10-23T15:51:25Z-
Data de envio: dc.date.issued2021-05-19-
Data de envio: dc.date.issued2021-05-19-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/40953-
Fonte completa do material: dc.identifierhttps://doi.org/10.3389/fimmu.2019.02927-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/893779-
Descrição: dc.descriptionFoam cells are specialized lipid-loaded macrophages derived from monocytes and are a key pathological feature of atherosclerotic lesions. Lysophosphatidylcholine (LPC) is a major lipid component of the plasma membrane with a broad spectrum of proinflammatory activities and plays a key role in atherosclerosis. However, the role of LPC in lipid droplet (LD) biogenesis and the modulation of inflammasome activation is still poorly understood. In the present study, we investigated whether LPC can induce foam cell formation through an analysis of LD biogenesis and determined whether the cell signaling involved in this process is mediated by the inflammasome activation pathway in human endothelial cells and monocytes. Our results showed that LPC induced foam cell formation in both types of cells by increasing LD biogenesis via a NLRP3 inflammasome-dependent pathway. Furthermore, LPC induced pyroptosis in both cells and the activation of the inflammasome with IL-1β secretion, which was dependent on potassium efflux and lysosomal damage in human monocytes. The present study described the IL-1β secretion and foam cell formation triggered by LPC via an inflammasome-mediated pathway in human monocytes and endothelial cells. Our results will help improve our understanding of the relationships among LPC, LD biogenesis, and NLRP3 inflammasome activation in the pathogenesis of atherosclerosis.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherFrontiers-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rights© 2020 Corrêa, Silva, Ribeiro, Almeida, Santos, Corrêa, Sant'Ana, Assunção, Bozza and Magalhães. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
Palavras-chave: dc.subjectLisofosfolipídio-
Palavras-chave: dc.subjectCélulas adiposas-
Palavras-chave: dc.subjectInflamassoma-
Palavras-chave: dc.subjectAterosclerose-
Título: dc.titleLysophosphatidylcholine induces NLRP3 inflammasome-mediated foam cell formation and pyroptosis in human monocytes and endothelial cells-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.