
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Pavel, Shumyatsky | - |
| Autor(es): dc.creator | Lima, Aline de Souza | - |
| Data de aceite: dc.date.accessioned | 2024-10-23T15:50:15Z | - |
| Data de disponibilização: dc.date.available | 2024-10-23T15:50:15Z | - |
| Data de envio: dc.date.issued | 2010-03-02 | - |
| Data de envio: dc.date.issued | 2010-03-02 | - |
| Data de envio: dc.date.issued | 2009-06-08 | - |
| Data de envio: dc.date.issued | 2009-06-08 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/3824 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/893256 | - |
| Descrição: dc.description | Tese(doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009. | - |
| Descrição: dc.description | Seja p um número primo. Seja A um p-grupo abeliano elementar agindo sobre um p´-grupo finito G. Neste trabalho realizamos um estudo da infuência dos centralizadores dos automorfismos em A sobre a estrutura de G . Nesse sentido demonstramos que se A tem ordem pn+1 e assumindo que existe um inteiro positivo m tal que(fórmula) [CG(a)(d);CG(b)(d); … ;CG(b)(d)] = 1; m para todos a; b ϵ A#, onde 2d ≤ n, então G(d) é nilpotente de classe {p,n,m}- limitada; d;mg-limitada. Ainda, assumindo que existe um inteiro positivo m tal que (fórmula) [Ƴn(CG(a)); Ƴ n(CG(b)); ... ; Ƴ n(CG(b))] = 1 m para todos a; b ϵ A#,então Ƴ n(G)é nilpotente de classe {p,n,m}- limitada. Outro resultado é, se A tem ordem p2 e assumindo que o subgrupo, satisfaz uma lei positiva de grau n para todos a; b ϵ A#, então G satisfaz uma lei positiva de grau limitado por uma função dependendo somente de n e p. ______________________________________________________________________________________ ABSTRACT | - |
| Descrição: dc.description | Let p be a prime number. Let A be an elementary abelian p-group acting on a ifnite p´-group G. In this work we study the in uence of the centralizers of the automorphisms in A on the structure of G. We show that if A has order pn+1 and if there exists a positive integer m such that [CG(a)(d);CG(b)(d); … ;CG(b)(d)] = 1; m for all a; b ϵ A#, where 2d ≤ n, then G(d) is nilpotent of {p,n,m}- d;mg-bounded class. We also show that if there exists a positive integer m such that [Ƴn(CG(a)); Ƴ n(CG(b)); ... ; Ƴ n(CG(b))] = 1 m for all a; b ϵ A#, then Ƴ n(G) is nilpotent of fp; n;mg-bounded class. Another result is that if A has order p2 and the subgroup satisfies a positive law of degree n for all a; b ϵ A#, then G satisfies a positive law of degree bounded by a function depending only on n and p. | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Palavras-chave: dc.subject | Álgebra | - |
| Palavras-chave: dc.subject | Teoria dos grupos | - |
| Título: dc.title | Sobre centralizadores de automorfismos coprimos em grupos finitos | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: