A statistics-based descriptor for automatic classification of scatterers in seismic sections

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorMaciel, Susanne Tainá Ramalho-
Autor(es): dc.creatorBiloti, Ricardo-
Data de aceite: dc.date.accessioned2024-10-23T15:49:27Z-
Data de disponibilização: dc.date.available2024-10-23T15:49:27Z-
Data de envio: dc.date.issued2021-01-24-
Data de envio: dc.date.issued2021-01-24-
Data de envio: dc.date.issued2020-09-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/39955-
Fonte completa do material: dc.identifierhttps://doi.org/10.1190/geo2018-0673.1-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-6800-0002-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-5186-9705-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/892911-
Descrição: dc.descriptionDiscontinuities and small structures induce diffractions on seismic or ground-penetrating radar (GPR) acquisitions. Therefore, diffraction images can be used as a tool to access valuable information concerning subsurface scattering features, such as pinch outs, fractures, and edges. Usually, diffraction-imaging methods operate on diffraction events previously detected. Pattern-recognition methods are efficient to detect, image, and characterize diffractions. The use of this kind of approach, though, requires a numerical description of image points on a seismic section or radargram. We have investigated a new descriptor for seismic/GPR data that distinguishes diffractions from reflections. The descriptor consists of a set of statistical measures from diffraction operators sensitive to kinematic and dynamic aspects of an event. We develop experiments in which the proposed descriptor was incorporated into a pattern-recognition routine for diffraction imaging. The obtained method is useful for performing the automatic classification of image points using supervised and unsupervised algorithms, as a complementary step to Kirchhoff imaging. We also develop a new type of filtering, designed to address anomalies on the diffraction operators caused by interfering events. We evaluate the method using synthetic seismic data and real GPR data. Our results indicate that the descriptor correctly discriminates diffractions and shows promising results for low signal-to-noise-ratio situations.-
Publicador: dc.publisherSociety of Exploration Geophysicists-
Relação: dc.relationhttps://library.seg.org/doi/abs/10.1190/geo2018-0673.1-
Direitos: dc.rightsAcesso Restrito-
Palavras-chave: dc.subjectDifração-
Palavras-chave: dc.subjectRadar de penetração no solo-
Título: dc.titleA statistics-based descriptor for automatic classification of scatterers in seismic sections-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.