Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Sobral, Yuri Dumaresq | - |
Autor(es): dc.contributor | Cunha, Francisco Ricardo da | - |
Autor(es): dc.contributor | psejas@hotmail.com | - |
Autor(es): dc.creator | Paz, Pavel Zenon Sejas | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:47:32Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:47:32Z | - |
Data de envio: dc.date.issued | 2021-04-23 | - |
Data de envio: dc.date.issued | 2021-04-23 | - |
Data de envio: dc.date.issued | 2021-04-23 | - |
Data de envio: dc.date.issued | 2020-10-28 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/40627 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/892092 | - |
Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020. | - |
Descrição: dc.description | Neste trabalho, apresentamos dois estudos de problemas de estabilidades em escoamentos de fluidos magnéticos. O primeiro é um estudo sobre a estabilidade de um escoamento de Poiseuille no plano bidimensional de um fluido magnético na presença de um campo magnético aplicado. O fluido é incompressível e sua magnetização é acoplada ao escoamento por meio de uma equação fenomenológica simples. Os autovalores do sistema linearizado são calculados usando um esquema de diferenças finitas e estudados com relação aos parâmetros adimensionais do problema. Estudamos os casos de campos magnéticos aplicados horizontal e vertical. Nossos resultados indicam que o escoamento é desestabilizado pela presença de um campo magnético aplicado horizontalmente, enquanto que é estabilizado quando um campo é aplicado verticalmente. Caracterizamos a estabilidade do fluxo calculando os diagramas de estabilidade em termos dos parâmetros adimensionais e, o mais importante, determinamos a mudança do número de Reynolds crítico em termos dos parâmetros magnéticos. Além disso, mostramos que o limite superparamagnético, no qual a magnetização do fluido é desacoplada da hidrodinâmica, recupera o mesmo número de Reynolds crítico puramente hidrodinâmico, independentemente da direção do campo aplicado e dos valores dos outros parâmetros magnéticos adimensionais. O segundo estudo é sobre a ins-tabilidade de Plateau-Rayleigh para jatos de fluidos magnéticos. Apresentamos uma teoria superparamagnética simplificada que leva em consideração a permeabilidade magnética da região externa. Nossos resultados indicam que a estabilidade do jato é apenas marginalmente afetada quando se considera uma região externa magneticamente permeável. Em seguida, construímos uma teoria completa para um fluido magnética na qual a equação de evolução da magnetização, idêntica à usada no primeiro problema, é levada em consideração. No regime de ondas longas, construímos um sistema de leis de conservação que é usado como base para uma análise de estabilidade linear. A construção desta teoria provou ser complicada porque as condições de contorno para as grandezas magnéticas tiveram que ser consideradas cuidadosamente ao longo da superfície livre de jato. Os resultados indicam que a estabilidade do sistema é marginalmente melhorada quando a magnetização relaxa com o fluxo em escalas de tempo moderadas. Por outro lado, o termo precessional na equação de evolução da magnetização tende a aproximar o sistema de um regime superparamagnético. | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Fundação de Apoio a Pesquisa do Distrito Federal (FAP/DF). | - |
Descrição: dc.description | In this work, we present two studies of problems of instabilities in flows of magnetic fluids. The first one is a study on the stability of a two-dimensional plane Poiseuille flow of a magnetic fluids in the presence of an applied magnetic field. The fluid is incompressible and its magnetization is coupled to the flow through a simple phenomenological equation. The eigenvalues of the linearized system are computed using a finite difference scheme and studied with respect to the dimensionless parameters of the problem. We study the cases of horizontal and vertical applied magnetic fields. Our results indicate that the flow is further destabilized by the presence of a horizontal applied magnetic field, whereas it is stabilized when a vertical applied field is present. We characterize the stability of the flow by computing the stability diagrams in terms of the dimensionless parameters and, most importantly, we determine the change of the critical Reynolds number in terms of the magnetic parameters. Furthermore, we show the superparamagnetic limit, in which the magnetization of the fluid is decoupled from the hydrodynamics, recovers the same purely hydrodynamic critical Reynolds number, regardless of the applied field direction and of the values of the other dimensionless magnetic parameters. The second study is the Plateau-Rayleigh instability for jets of magnetic fluids. We present a simplified superparamagnetic theory that takes into consideration the magnetic permeability of the outer region. Our results indicate that the stability of the jet is only marginally affected when considering a magnetically permeable outer region. We then built a complete theory for a magnetic fluid in which the magnetization evolution equation, identical to the one used in the first problem, is taken into account. In the long waves regime, we constructed a system of conservation laws that are used as the basis for a linear stability analysis. The construction of this theory proved to be complicated because the boundary conditions for the magnetic quantities had to considered carefully across the jet free surface. The results indicate that the stability of the system is marginally improved when the magnetization relaxes with the flow over moderate time scales. On the other hand, the precessional term in the magnetization evolution equation tends to approach the system to a superparamagnetic regime. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Estabilidade hidrodinâmica | - |
Palavras-chave: dc.subject | Fluidos magnéticos | - |
Palavras-chave: dc.subject | Equação de Orr-Sommerfeld | - |
Palavras-chave: dc.subject | Equação de Shliomis | - |
Palavras-chave: dc.subject | Instabilidade de Plateau-Rayleigh | - |
Título: dc.title | Instabilidades em escoamentos de fluidos magnéticos | - |
Título: dc.title | Instabilities in flows of magnetic fluids | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: