Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ferreira, Lucas Conque Seco | - |
Autor(es): dc.creator | Brito, Geovane Cardoso de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:43:37Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:43:37Z | - |
Data de envio: dc.date.issued | 2021-02-25 | - |
Data de envio: dc.date.issued | 2021-02-25 | - |
Data de envio: dc.date.issued | 2021-02-25 | - |
Data de envio: dc.date.issued | 2020-09-02 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/40133 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/890364 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020. | - |
Descrição: dc.description | O objetivo dessa dissertação é recuperar a intuição geométrica por trás da celebrada fibração de Hopf $h: S^{3} \to S^{2}$. Com o tempo, isso parece haver sido deixado de lado nas exposições modernas, favorecendo apenas o lado topológico ou algébrico. No Capítulo 1 investigamos a geometria do Paralelismo de Clifford, usado por Hopf na descoberta das propriedades topológicas de sua fibração. No Capítulo 2 investigamos a topologia dos grupos de homotopia e da sequência exata longa em homotopia de fibrados, que permite mostrar, dentre outros, que a fibração de Hopf não é homotópica uma constante. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). | - |
Descrição: dc.description | The purposeofthismaster's thesisistorecover the geometric intuition behind Hopf's celebrat edfibration $h: S^3 \to S^2$. Over time, this seems to have been overlooked in modern exhibitions, whichseemto favor only the topologic alor the algebraic sides. In Chapter 1 weinvestigate the geometry of Clifford Parallelism, used by Hop fto discover the topologic al properties of his fibration. In Chapter 2, weinvestigat ethetopology of the homotopy groups and of the exactlongs equence in homotopyoffiberbundles, whichallowsusto show, amongothers, that Hopf'sf ibrationis not homotopicto a constant. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Paralelismo de Clifford | - |
Palavras-chave: dc.subject | Círculos de Hopf | - |
Palavras-chave: dc.subject | Grupos de homotopia | - |
Palavras-chave: dc.subject | Operador bordo | - |
Título: dc.title | Geometria e topologia da fibração de Hopf | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: