Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Godinho, Hemar Teixeira | - |
Autor(es): dc.creator | Veras, Daiane Soares | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:43:08Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:43:08Z | - |
Data de envio: dc.date.issued | 2017-08-22 | - |
Data de envio: dc.date.issued | 2017-08-22 | - |
Data de envio: dc.date.issued | 2017-08-22 | - |
Data de envio: dc.date.issued | 2017-03-31 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/24228 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.26512/2017.03.T.24228 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/890154 | - |
Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. | - |
Descrição: dc.description | Davenport e Lewis provaram uma versão da Conjectura de Artin que diz que, denotando por Γ* (k , p) o menor número de variáveis para o qual uma forma aditiva com coeficientes inteiros e grau k possui solução p−ádica não trivial, onde p é um número primo, então Γ* (k , p) ≤ k 2 +1 e a igualdade acontece quando p = k+1. Sabe-se que, em geral, quando k + 1 é composto essa cota é suficiente, mas não é necessária. Nessa tese melhoramos a cota dada pela conjectura e obtemos o número exato de variáveis necessárias para garantir a solubilidade p-ádica não trivial de uma forma aditiva de grau k com coeficientes inteiros, sempre que p − 1 divide k. Mais precisamente, escrevendo k = γq + r onde γ depende do grau k e0 ≤ r ≤ γ − 1, provamos que Γ* (k , p)≤( p γ−1) q+ p r , e a igualdade vale para os primos p tais que p − 1 divide k. Como aplicação desse resultado, mostramos que, se k = 54, então 1049 variáveis são suficientes para garantir a solubilidade p-ádica não trivial para todo p. Para k = 24, M. P. Knapp mostrou que são necessárias 289 variáveis para garantir a solubilidade p-ádica não trivial para todo p, entretanto, ainda como aplicação do resultado citado acima, provamos que, se p ≠ 13, então 140 variáveis são suficientes para garantir a solubilidade desejada. Além disso, encontramos o valor exato de Γ* (10 , p) para cada p primo. | - |
Descrição: dc.description | Davenport and Lewis have proved a version of Artin’s Conjecture wich states that, denoting by Γ* (k , p) the least number of variables for wich an additive form with integer coefficients and degree k has a nontrivial p-adic solution, where p is a prime number, then Γ* (k , p)≤ k 2 +1 and the equality occurs when p = k + 1. It is known that in general when k + 1 is composite this bound is sufficient but it is not necessary. In this work we improve the conjecture´s bound and give the exact number of necessary variables to states that an additive form with integers coefficients and degree k has a nontrivial p-adic solution, since p − 1 divide k. More precisely, writing k = γq + r with γ depending of degree k and 0 ≤ r ≤ γ − 1, then Γ* (k , p)≤ ( p γ−1) q+ p r , and the equality occurs when p − 1 divide k. As an application of this result we show that, if k = 54, then 1049 variables are sufficient to ensure the nontrivial p-adic solubility for all p. For k = 24, M. P. Knapp has proved that 289 variables are necessary to ensure the nontrivial p-adic solution for all p, however, still as an application of the previous result, we show that, if p ≠ 13, then 140 variables are sufficient to ensure de solubility desired. Moreover, we give the exact value to Γ* (10, p ) for each prime p. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Conjectura de Artin | - |
Palavras-chave: dc.subject | Formas aditivas | - |
Título: dc.title | Formas aditivas sobre corpos p-ádicos | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: