Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ramos, Guilherme Novaes | - |
Autor(es): dc.creator | Mourão, Roberto Nunes | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:42:49Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:42:49Z | - |
Data de envio: dc.date.issued | 2019-01-31 | - |
Data de envio: dc.date.issued | 2019-01-31 | - |
Data de envio: dc.date.issued | 2019-01-31 | - |
Data de envio: dc.date.issued | 2018-06-29 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/33918 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/890007 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2018. | - |
Descrição: dc.description | Um banco brasileiro disponibilizou a abertura de conta bancária por meio de um aplicativo móvel, o que geralmente exige muito pouca informação do usuário. Essa falta de dados prejudica os atuais modelos preditivos aplicados na seleção de clientes para campanhas de marketing. Com o intuito de atenuar isso, este trabalho investiga o uso da Mineração de Dados a fim de criar um modelo preditivo capaz de identificar a renda desses clientes. Para tanto, como treinamento, usa os dados de um grupo de clientes, os quais, de forma semelhante, utilizam o aplicativo móvel do banco. Todavia, abriram suas contas indo às agências, local onde comprovaram suas rendas. Os dados utilizados incluem informações cadastrais, demográficas e características dos smartphones dos clientes. O processo CRISP-DM foi aplicado para comparar várias abordagens, tais como: Regressão Logística, Random Forest, Redes Neurais Artificiais, Gradient Boosting Machine e Hillclimbing Ensemble Selection with Bootstrap Sampling. Os resultados mostraram que o Gradient Boosting Machine obteve o melhor resultado com Acurácia de 92 % e F-Measure de 62 %. | - |
Descrição: dc.description | Digital bank accounts require little information from customers to enable simple banking services, and the absence of income data hampers a focused targeting of customers for additional products/services. This study presents a comparison of predictive models to identify a customer’s income bracket, by mining digital account data. The information available to build the models includes customers’ registered data, demographics, house prices, and smartphone features. The models are applied to a set of customers with regular accounts, who have income data and features similar to those with digital accounts. The models’ performances are compared to the model currently in use in a private bank. Several approaches were used, in a CRISP-DM process: Logistic Regression, Random Forest, Artificial Neural Networks, Gradient Boosting Machine, and Hill-Climbing Ensemble with Bootstrap Sampling. Experimental results indicate the Gradient Boosting Machine model achieved the best results, with a 92% Accuracy and a 62% F-Measure. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Mineração de dados (Computação) | - |
Palavras-chave: dc.subject | Bancos - produtos e serviços | - |
Palavras-chave: dc.subject | Bancos - administração | - |
Título: dc.title | Mineração de dados para previsão de renda de clientes com contas-correntes digitais | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: