Aprendizagem cruzada para previsão de séries temporais univariadas

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorFiorucci, José Augusto-
Autor(es): dc.creatorPaula, Matheus Gorito de-
Data de aceite: dc.date.accessioned2024-10-23T15:36:22Z-
Data de disponibilização: dc.date.available2024-10-23T15:36:22Z-
Data de envio: dc.date.issued2023-04-05-
Data de envio: dc.date.issued2023-04-05-
Data de envio: dc.date.issued2023-04-05-
Data de envio: dc.date.issued2022-09-19-
Fonte completa do material: dc.identifierhttp://repositorio2.unb.br/jspui/handle/10482/45777-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/887279-
Descrição: dc.descriptionDissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2022.-
Descrição: dc.descriptionAprendizado de máquina se refere ao processo pelo qual os computadores desenvolvem o reconhecimento de padrões, ou a capacidade de aprender continuamente, ou fazer previsões com base em dados, e então, fazer ajustes sem serem especificamente programados para isso. Dentro dos métodos de aprendizado de máquina, esse trabalho foca na técnica de Stacking. Competições de Previsões de Séries Temporais são competições que têm como objetivo avaliar e comparar a acurácia de modelos de previsão de Séries Temporais. Nesse projeto utiliza-se o banco de Séries Temporais da competição M3 para realizar previsões utilizando os modelos de referência de Séries Temporais. Após, treina-se um modelo de Boosting com os resultados das previsões buscando obter resultados mais eficientes nas competições.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).-
Descrição: dc.descriptionMachine learning refers to the process by which computers develop pattern recognition, or the ability to continually learn, or make predictions based on data, and then make adjustments without being specifically programmed to do so. Within machine learning methods, this work focuses on the Stacking technique. Time Series Forecast Competitions are competitions that aim to evaluate and compare the accuracy of Time Series forecast models. In this project we use the Time Series database from the M3 competition to make predictions using the Time Series reference models. Afterwards, we train a Boosting model with the results of the predictions seeking to obtain more efficient results in competitions.-
Descrição: dc.descriptionInstituto de Ciências Exatas (IE)-
Descrição: dc.descriptionDepartamento de Estatística (IE EST)-
Descrição: dc.descriptionPrograma de Pós-Graduação em Estatística-
Formato: dc.formatapplication/pdf-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.-
Palavras-chave: dc.subjectAprendizado de máquina-
Palavras-chave: dc.subjectSéries temporais-
Palavras-chave: dc.subjectBoosting-
Palavras-chave: dc.subjectStacking-
Título: dc.titleAprendizagem cruzada para previsão de séries temporais univariadas-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.