Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Santos, Helton Saulo Bezerra dos | - |
Autor(es): dc.contributor | alan.silva.6991@gmail.com | - |
Autor(es): dc.creator | Silva, Alan da | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:34:27Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:34:27Z | - |
Data de envio: dc.date.issued | 2021-04-09 | - |
Data de envio: dc.date.issued | 2021-04-09 | - |
Data de envio: dc.date.issued | 2021-03-08 | - |
Data de envio: dc.date.issued | 2020-12-17 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/40470 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/886474 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2020. | - |
Descrição: dc.description | Modelos de regressão baseados na família de distribuições log-simétricas e na família de distribuições mistura-escala Birnbaum-Saunders são particularmente úteis quando a variável resposta é estritamente positiva e assimétrica. Neste trabalho, propomos duas classes de modelos de regressão quantílica que são apresentados em dois artigos, o primeiro deles baseado nas distribuições log-simétricas e o se- gundo baseado nas distribuições mistura-escala Birnbaum-Saunders. Em ambos os casos, é feita uma reparametrização das distribuições inserindo um parâmetro de quantil. Em cada artigo, dois estudos de simulação foram realizados utilizando o software R, sendo o primeiro deles para análise do desem- penho dos estimadores de máxima verossimilhança, dos critérios de informação AIC, BIC e AICc, e dos resíduos Cox-Snell e quantil aleatorizado. O segundo avaliou o tamanho/poder dos testes Wald, razão de verossimilhança, score e gradiente. Os dois estudos de simulação foram conduzidos considerando diferentes quantis de interesse e tamanhos amostrais. Por fim, uma aplicação utilizando dados reais é apresentada para cada modelo proposto. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). | - |
Descrição: dc.description | Regression models based on the family of log-symmetric distributions and the family of scale-mixture Birnbaum-Saunders distributions are particularly useful when the response variable is strictly positive and asymmetric. In this work, we propose two classes of quantile regression models that are presented in two articles, the first based on the log-symmetric distributions and the second based on the scale-mixture Birnbaum-Saunders distributions. In both cases, a reparameterization of the distribution is introduced by inserting a quantile parameter. For each article, two simulation studies are carried out using the R software. The first one analyzes the performance of the maximum likelihood estimators, the information criteria AIC, BIC and AICc, and the generalized Cox-Snell and random quantile residuals. The second one evaluates the performance of the size and power of the Wald, likelihood ratio, score and gradient tests. The two simulation studies are conducted considering different quantiles of interest and sample sizes. Finally, an application using real data is presented for each proposed model. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Estatística (IE EST) | - |
Descrição: dc.description | Programa de Pós-Graduação em Estatística | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Distribuições log-simétricas | - |
Palavras-chave: dc.subject | Regressão quantílica | - |
Palavras-chave: dc.subject | Simulação de Monte Carlo | - |
Palavras-chave: dc.subject | Teste de hipóteses | - |
Título: dc.title | Regressão quantílica com distribuições assimétricas | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: