Remote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCosta, Marcus Vinícius Coelho Vieira da-
Autor(es): dc.creatorCarvalho, Osmar Luiz Ferreira de-
Autor(es): dc.creatorOrlandi, Alex Gois-
Autor(es): dc.creatorHirata, Issao-
Autor(es): dc.creatorAlbuquerque, Anesmar Olino de-
Autor(es): dc.creatorSilva, Felipe Vilarinho e-
Autor(es): dc.creatorGuimarães, Renato Fontes-
Autor(es): dc.creatorGomes, Roberto Arnaldo Trancoso-
Autor(es): dc.creatorCarvalho Júnior, Osmar Abílio de-
Data de aceite: dc.date.accessioned2024-10-23T15:32:30Z-
Data de disponibilização: dc.date.available2024-10-23T15:32:30Z-
Data de envio: dc.date.issued2021-07-27-
Data de envio: dc.date.issued2021-07-27-
Data de envio: dc.date.issued2020-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/41506-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/en14102960-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-5619-8525-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0003-1561-7583-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-9555-043X-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0003-4724-4064-
Fonte completa do material: dc.identifierhttps://orcid.org/0000-0002-0346-1684-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/885677-
Descrição: dc.descriptionBrazil is a tropical country with continental dimensions and abundant solar resources that are still underutilized. However, solar energy is one of the most promising renewable sources in the country. The proper inspection of Photovoltaic (PV) solar plants is an issue of great interest for the Brazilian territory’s energy management agency, and advances in computer vision and deep learning allow automatic, periodic, and low-cost monitoring. The present research aims to identify PV solar plants in Brazil using semantic segmentation and a mosaicking approach for large image classification. We compared four architectures (U-net, DeepLabv3+, Pyramid Scene Parsing Network, and Feature Pyramid Network) with four backbones (Efficient-net-b0, Efficient-net-b7, ResNet-50, and ResNet-101). For mosaicking, we evaluated a sliding window with overlapping pixels using different stride values (8, 16, 32, 64, 128, and 256). We found that: (1) the models presented similar results, showing that the most relevant approach is to acquire high-quality labels rather than models in many scenarios; (2) U-net presented slightly better metrics, and the best configuration was U-net with the Efficient-net-b7 encoder (98% overall accuracy, 91% IoU, and 95% F-score); (3) mosaicking progressively increases results (precision-recall and receiver operating characteristic area under the curve) when decreasing the stride value, at the cost of a higher computational cost. The high trends of solar energy growth in Brazil require rapid mapping, and the proposed study provides a promising approach.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherMDPI-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
Palavras-chave: dc.subjectEnergia solar-
Palavras-chave: dc.subjectSensoriamento remoto-
Título: dc.titleRemote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.