Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Cioletti, Leandro Martins | - |
Autor(es): dc.creator | Costa, Elias da | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:31:05Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:31:05Z | - |
Data de envio: dc.date.issued | 2013-10-30 | - |
Data de envio: dc.date.issued | 2013-10-30 | - |
Data de envio: dc.date.issued | 2013-10-30 | - |
Data de envio: dc.date.issued | 2013-03-07 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/14441 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/885094 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013. | - |
Descrição: dc.description | Na primeira parte deste trabalho, apresentamos a teoria geral das medidas de Gibbs. A abordagem é baseada nas equações DLR e no formalismo termodinâmico. Em seguida, estudamos o modelo de Ising ferromagnético bidimensional. Mostramos que este modelo possui a propriedade forte de Markov e também algumas desigualdades de correlação, por exemplo a desigualdade de FKG. Por último provamos o Teorema de Aizenman-Higuchi o principal resultado desta dissertação. Este teorema sobre decomposição extremal foi provado independentemente, no inícios dos anos oitenta, por Michael Aizenman e Atsushi Higuchi, ambos baseados nos trabalhos de Lucio Russo. A prova dada aqui, devido a Aizenman, se baseia na investigação das simetrias dos espaços de configurações duplas e na aplicação sistemática da desigualdade de FKG e das equações DLR. _______________________________________________________________________________________ ABSTRACT | - |
Descrição: dc.description | In the first part of this work, we present the general Gibbs measure theory. The approach is based on the DLR equations and the Thermodynamical Formalism. Next we study the ferromagnetic Ising model on the square lattice. We prove that this model satisfy the strong Markov property and also prove some correlation inequalities, as for example FKG. In the end we prove the Aizenman-Higuchi's theorem which is the main result of this master thesis. This theorem is about extremal decomposition and it was proved independently by Michael Aizenman and Atsushi Higuchi, both based on the work of Lucio Russo. The proof given here is due to Aizenman and is made by the investigation of the double configuration space symetries and systematic application of the FKG inequality and the DLR equations. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Mecânica estatística | - |
Palavras-chave: dc.subject | Probabilidades | - |
Palavras-chave: dc.subject | Teoria dos grafos | - |
Título: dc.title | Medidas de Gibbs e o Teorema de Aizenman-Higuchi | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: