Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Pulino Filho, Athail Rangel | - |
Autor(es): dc.creator | Borges Filho, Jonas Pinheiro | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:29:45Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:29:45Z | - |
Data de envio: dc.date.issued | 2020-02-09 | - |
Data de envio: dc.date.issued | 2020-02-09 | - |
Data de envio: dc.date.issued | 2020-02-09 | - |
Data de envio: dc.date.issued | 2001-08 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/36870 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/884545 | - |
Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2001. | - |
Descrição: dc.description | Fsta dissertação de mestrado apresenta o Método dos Operadores Eiscretos (MOE) aplicado à solução de problemas de elasticidade bidimensional. O trabalho busca fornecer ao engenheiro, uma poderosa ferramenta para aproximação numérica de problemas físicos. O MOE é introduzido através de um exemplo simples de potencial, um problema de valor de contorno em regime permanente regido pela equação de Laplace. O trabalho apresenta uma breve revisão sobre a teoria da elasticidade, que parte dos conceitos elementares de tensão e deformação e chega à dedução das equações de Navier (estado plano de deformações) e equações de equilíbrio no contorno. Então, trata-se da aplicação do MOE a problemas de elasticidade. Para cada caso, contorno ou domínio, mostra-se a obtenção das formas discretas dos operadores diferenciais e a discretização das equações que governam o problema. A questão do erro de aproximação numérica é tratada com base numa estimativa para o erro de truncamento da série de Taylor e na fórmula do resto de Lagrange. Assim, propõe-se uma estimativa para o erro de truncamento das equações governantes, que possibilita localizar regiões críticas do domínio, isto é, regiões mais suscetíveis a erros de aproximação numérica. Por fim, a validação do método é feita através de quatro exemplos clássicos que abordam diferentes aspectos da formulação de operadores discretos. | - |
Descrição: dc.description | This work presents the Eiscrete Operators Method (EOM) applied to solve two-dimensional elasticity problems. Its major goal is to offer for the engineer a powerful tool for numerical approximation of physical problems. The EOM is introduced through a simple potential example, a steady-state field problem governed by Laplace equation. It presents a brief review about the theory of elasticity, in which the Navier equations (plane strain) and boundary equilibrium equations are deduced. Then, the EOM is applied to solve two-dimensional elasticity problems. For each case, inner domain or boundary points, it is shown how to obtain the discrete form of the differential operators from the governing equations. Based on an estimate for the remainder term of the Taylor series and on the Lagrange’s form of the remainder term, the issue of numerical approximation error is considered. The truncation error on the discrete governing equations is used to locate critical regions in the domain, in other words, regions where numerical approximation errors are most likely to be found. Finally, the validation of the method is made through four classical examples, and different aspects of the EOM are explored on each of them. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso restrito | - |
Palavras-chave: dc.subject | Elasticidade | - |
Palavras-chave: dc.subject | Método dos operadores discretos | - |
Título: dc.title | O método dos operadores discretos aplicado à elasticidade bidimensional | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: