Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Dodonov, Viktor | - |
Autor(es): dc.creator | Freitas, Miguel Citeli de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:29:03Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:29:03Z | - |
Data de envio: dc.date.issued | 2024-08-05 | - |
Data de envio: dc.date.issued | 2024-08-05 | - |
Data de envio: dc.date.issued | 2024-08-04 | - |
Data de envio: dc.date.issued | 2023-09-14 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/49498 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/884254 | - |
Descrição: dc.description | Dissertação (mestrado em Física) — Universidade de Brasília, Brasília, 2023. | - |
Descrição: dc.description | Uma das principais tentativas de descrever a fase de sistemas quânticos foi proposta por Lerner, Huang e Walters em 1970 com a introdução dos estados coerentes de fase |𝜀⟩ = √︁1 − |𝜀|2 ∑︀∞𝑛=0𝜀𝑛|𝑛⟩, onde |𝑛⟩ são os estados de Fock e 𝜀 = |𝜀|e𝑖𝜙, com |𝜀| < 1 e 𝜙 ∈ [0, 2𝜋).Os estados |𝜀⟩ foram chamados desta forma por Shapiro, Shepard e Wong em 1990 devidoà sua semelhança com os estados coerentes de Glauber-Sudarshan, se diferenciando apenaspela ausência do fator 1/√𝑛! em sua definição, |𝛼⟩ = exp{︁−12|𝛼|2}︁ ∑︀∞𝑛=0𝛼𝑛√𝑛!|𝑛⟩.Como a maioria dos trabalhos sobre fase se dedica a estudar propriedades dos operadores número e fase (^𝑛, 𝜙^), optamos por focar nossa pesquisa nas características associadas aos operadores de posição e momento (^𝑥, 𝑝^), calculando inicialmente valores médios e variâncias. Observamos que há uma forte compressão da posição (momento) quando a fase é igual a 𝜋/2 (0), embora esta ainda seja menor que a compressão sofrida pelo estado comprimido de vácuo. Notamos que o análogo misto do estado puro |𝜀⟩, descrito por meio do operador estatístico𝜌^ = (1 − |𝜀|2)∑︀∞𝑛=0|𝜀|2𝑛|𝑛⟩⟨𝑛|, possui uma matriz densidade ⟨𝑥|𝜌^|𝑥⟩ Gaussiana, mesmo que a densidade de probabilidade |𝜓𝜀(𝑥)|2 não seja. Por esta razão, investigamos detalhadamente diferentes medidas de não-Gaussianidade dos estados coerentes de fase. Finalmente, calculamos a função de Wigner de |𝜀⟩ e vimos como a Gaussianidade é facilmente perdidacom pequenas variações de 𝜙 quando 𝜀 é próximo de 1. | - |
Descrição: dc.description | One of the main attempts to describe the phase of quantum systems was proposed by Lerner, Huang and Walters in 1970 with the introduction of coherent phase states |𝜀⟩ = √︁1 − |𝜀|2 ∑︀∞𝑛=0𝜀𝑛|𝑛⟩, where |𝑛⟩ are the Fock states and 𝜀 = |𝜀|e𝑖𝜙, with |𝜀| < 1 and 𝜙 ∈[0, 2𝜋). The states |𝜀⟩ were named by Shapiro, Shepard and Wong in 1990 due to their similarity with the Glauber-Sudarshan coherent state, differing only in the absence of thefactor 1/√𝑛! in its definition, |𝛼⟩ = exp{︁−12|𝛼|2}︁ ∑︀∞𝑛=0𝛼𝑛√𝑛!|𝑛⟩.Since most works on phase are dedicated to studying properties of the number and phase operators (^𝑛, 𝜙^), we chose to focus our research on the characteristics associated with theposition and moment operators (^𝑥, 𝑝^), initially calculating mean values and variances. We observe that there is a strong squeezing of the position (momentum) when the phase isequal to 𝜋/2 (0), although this is still smaller than the squeezing suffered by the squeezed vacuum state. We noticed that the mixed analogue of the pure state |𝜀⟩, described by the statistical operator 𝜌^ = (1− |𝜀|2)∑︀∞𝑛=0|𝜀|2𝑛|𝑛⟩⟨𝑛|, has a Gaussian density matrix ⟨𝑥|𝜌^|𝑥⟩, even though the probability density |𝜓𝜀(𝑥)|2 is not. For this reason, we investigated in detail different measures of non-Gaussianity of coherent phase states. Finally, we calculated the Wigner function of |𝜀⟩ and saw how Gaussianity is easily lost with small variations of 𝜙 when 𝜀is close to 1 | - |
Descrição: dc.description | Instituto de Física (IF) | - |
Descrição: dc.description | Programa de Pós-Graduação em Física | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Função de Wigner | - |
Palavras-chave: dc.subject | Compressão | - |
Título: dc.title | Compressão e não-gaussianidade de estados coerentes de fase | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: