
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Furtado, Marcelo Fernandes | - |
| Autor(es): dc.contributor | rodolfoyondaime26@gmail.com | - |
| Autor(es): dc.creator | Oliveira, Rodolfo Ferreira de | - |
| Data de aceite: dc.date.accessioned | 2024-10-23T15:25:58Z | - |
| Data de disponibilização: dc.date.available | 2024-10-23T15:25:58Z | - |
| Data de envio: dc.date.issued | 2021-07-09 | - |
| Data de envio: dc.date.issued | 2021-07-09 | - |
| Data de envio: dc.date.issued | 2021-06-09 | - |
| Data de envio: dc.date.issued | 2021-03-30 | - |
| Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/41366 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/882909 | - |
| Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2021. | - |
| Descrição: dc.description | Neste trabalho apresentamos os Espaços de Sobolev com peso, os quais possuem a propriedade de preservar a compacidade da imersão, mesmo estando em domínio ilimitado. Como aplicação deste resultado, é possível obter soluções para equações do calor em a partir dos teoremas minimax já conhecidos, entre os quais citamos o Lema de Deformação Quantitativo, o Princípio Variacional de Ekeland e o Teorema do Passo da Montanha. Dada a natureza da aplicação destes espaços, resolvemos no final deste texto um problema elíptico em com não-linearidade do tipo côncavo-convexo na fronteira, com expoentes subcrítico e crítico. | - |
| Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). | - |
| Descrição: dc.description | In this work we present weighted Sobolev spaces, which have the property of preserving the compactness of the immersion, even being in an unlimited domain. As an application of this result, it is possible to obtain solutions for heat equations in from the minimax theorems already know, among which we quote the Quantitative Deformation Lemma, Ekeland’s Variational Principle and the Mountain Pass Theorem. Given the nature of the application of these spaces, at the end of this text we have solved a eliptic problem in with concave-convex nonlinearity on the boundary, with subcritical and critical exponents. | - |
| Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
| Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
| Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
| Palavras-chave: dc.subject | Espaços de Sobolev com Peso | - |
| Palavras-chave: dc.subject | Teoremas Minimax | - |
| Palavras-chave: dc.subject | Existência | - |
| Palavras-chave: dc.subject | Multiplicidade | - |
| Título: dc.title | Uma equação elíptica no semi-plano com não linearidade crítica no bordo | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: