Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Godinho, Hemar Teixeira | - |
Autor(es): dc.contributor | caalriac@hotmail.com | - |
Autor(es): dc.creator | Acevedo, Carlos Alirio Rico | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:25:31Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:25:31Z | - |
Data de envio: dc.date.issued | 2022-06-27 | - |
Data de envio: dc.date.issued | 2022-06-27 | - |
Data de envio: dc.date.issued | 2022-06-27 | - |
Data de envio: dc.date.issued | 2022-03-03 | - |
Fonte completa do material: dc.identifier | https://repositorio.unb.br/handle/10482/44015 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/882706 | - |
Descrição: dc.description | Tese (Doutorado em Matemática) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Brasília, 2022. | - |
Descrição: dc.description | Para quaisquer inteiro positivo k é definido Γ ∗ (k, p) sendo o menor inteiro s tal que quaisquer forma aditiva a1x k 1 +· · ·+asx k s em s variáveis com coeficientes nos inteiros possui um zero não trivial no corpo p-ádico Qp. Por sua vez, define-se Γ ∗ (k) sendo o menor inteiro s para o qual, quaisquer forma aditiva de grau k com coeficientes inteiros em s variáveis possui um zero não trivial em quaisquer corpo p-ádico, isto é, Γ ∗ (k) = maxp{Γ ∗ (k, p)} com o máximo percorrendo o conjunto dos números primos. Agora, defina γ ∗ = ⌊(τ + 1) log2 (3)⌋ + 1. Em [16] Knapp mostra que quando k = 27, então Γ ∗ (k, 3) ≤ 27 (γ ∗ − 3) + 1 = 109, mas em este trabalho é generalizada e melhorada esta limitante e mostra-se que Γ ∗ (3τ , 3) ≤ 3 τ (γ ∗ − τ − 1) + 1. Além disso, são dadas limitantes superiores para Γ ∗ (k, p) quando -1 é uma k-ésima potencia modulo p τ+1 . Também, é dado o valor exato de Γ ∗ (81) = 568, e, de maneira análoga, mostra-se que Γ ∗ (243, p) ≤ 1945 para p diferente de 3889 ou 4861, e que Γ ∗ (729, p) ≤ 7291 sempre que p ̸= 2917. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). | - |
Descrição: dc.description | For any positive integer k, we define Γ ∗ (k, p) to be the smallest integer s such that every additive form a1x k 1 + · · · + asx k s in s variables with integers coefficients have a nontrivial zero in the p-adic field Qp. In this way, we define Γ ∗ (k) to be the smallest integer s for which every additive form of degree k with integer coefficients in s variables have a nontrivial zero in every p-adic fields, i.e, Γ ∗ (k) = maxp{Γ ∗ (k, p)} for p prime. Now, we define γ ∗ = ⌊(τ + 1) log2 (3)⌋ + 1. In [16] Knapp shows that for k = 27, them Γ ∗ (27, 3) ≤ 27 (γ ∗ − 3) + 1 = 109, but, we will improve and generalize this bound, i.e, we should prove to Γ ∗ (3τ , 3) ≤ 3 τ (γ ∗ − τ − 1) + 1. In addition, we give upper bounds for Γ ∗ (k, p) when -1 is a kth power modulo p τ+1 . Also, the exact value of Γ ∗ (81) = 568, and in an analogous way, we should prove that Γ ∗ (243, p) ≤ 1945 for p different from 3889 or 4861, and that Γ ∗ (729, p) ≤ 7291 for any p ̸= 2917 | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Formas aditivas | - |
Palavras-chave: dc.subject | Solvibilidade p-ádica | - |
Título: dc.title | Formas aditivas de grau 3 τ | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: