Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ferreira, Diego Marques | - |
Autor(es): dc.creator | Vieira, Vinicius Facó Ventura | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:19:52Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:19:52Z | - |
Data de envio: dc.date.issued | 2017-02-19 | - |
Data de envio: dc.date.issued | 2017-02-19 | - |
Data de envio: dc.date.issued | 2017-02-19 | - |
Data de envio: dc.date.issued | 2016-02-24 | - |
Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/22666 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.26512/2016.02.T.22666 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/880342 | - |
Descrição: dc.description | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. | - |
Descrição: dc.description | A famosa e amplamente estudada sequência de Fibonacci é determinada pela recorrênciaFn= Fn-1 + Fn-2, onde F0 = 0 e F1 = 1. Podemos estender essa sequência para sequências recorrentes de ordem maior. Logo, para k ≥ 2 e n ≥ −(k − 2), sejaF(k)n = F(k)n-1 + ∙∙∙ + F(k)n-k, onde F(k)-(k-2) = ∙∙∙ = F(k)-1 = F(k)0 = 0 e F(k)1 = 1. Vamos estudar algumas equações Diofantinasenvolvendo tais sequências. Num primeiro momento, lembramos que um número perfeito é um natural que é soma de seus divisores próprios. Então, vamos aplicar formas lineares em logaritmo para achar números perfeitos pares em sequências de Fibonacci generalizadas. Em outras palavras, vamos estudar a equaçãoF(k)n = 2p-1(2p-1). Em outro problema, vamos estudar a valorização 2−ádica de F(k)n quando k = 4, a fim de procurar fatoriais nessa sequência, ou seja, vamos estudar a equaçãoQn = m!. Também, vamos usar técnicas parecidas para resolver um caso particular da equação de Brocard-Ramanujan, n2 = m! + 1, quando o inteiro né um número da sequência mencionada previamente. | - |
Descrição: dc.description | The famous and widely studied Fibonacci sequence is determined by there currence Fn= Fn-1 + Fn-2, where F0 = 0 and F1 = 1. We can extend this sequence for higher order recurrences. So, for k ≥ 2 and n ≥ −(k − 2), let F(k)n = F(k)n-1 + ∙∙∙ + F(k)n-k, where F(k)-(k-2) = ∙∙∙ = F(k)-1 = F(k)0 = 0 and F(k)1 = 1.We shall study some Diophantine equations involving such sequences. First, were call that a perfect number is a natural number which equals the sum of all its proper divisors. Then, we shall apply linear forms in logarithms to find even perfect numbers in genereralized Fibonacci sequences. In other words, we shall study the Diophantine equation F(k)n = 2p-1(2p-1).In another problem, we shall study the 2− adic valuation ofF(k)n, when k = 4, in order to find factorials in that sequence, i.e., we shall study the equation Qn= m!. Also, we shall use similar techniques to solve a particular case of the Brocard-Ramanujan equation, n2 = m! + 1, when the integern is a number of the previously mentioned sequence. | - |
Formato: dc.format | application/pdf | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Números de Fibonacci | - |
Palavras-chave: dc.subject | Equações diofantinas | - |
Palavras-chave: dc.subject | Sequências (Matemática) | - |
Palavras-chave: dc.subject | Análise fatorial | - |
Título: dc.title | Equações diofantinas envolvendo sequências de fibonacci generalizadas | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: