PlantRNA_sniffer : a SVM-based workflow to predict long intergenic non-coding RNAs in plants

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorVieira, Lucas Maciel-
Autor(es): dc.creatorGrativol, Clicia-
Autor(es): dc.creatorThiebaut, Flavia-
Autor(es): dc.creatorCarvalho, Thais G.-
Autor(es): dc.creatorHardoim, Pablo R.-
Autor(es): dc.creatorHemerly, Adriana-
Autor(es): dc.creatorLifschitz, Sergio-
Autor(es): dc.creatorFerreira, Paulo Cavalcanti Gomes-
Autor(es): dc.creatorWalter, Maria Emília Machado Telles-
Data de aceite: dc.date.accessioned2024-10-23T15:19:01Z-
Data de disponibilização: dc.date.available2024-10-23T15:19:01Z-
Data de envio: dc.date.issued2018-06-26-
Data de envio: dc.date.issued2018-06-26-
Data de envio: dc.date.issued2017-03-04-
Fonte completa do material: dc.identifierhttp://repositorio.unb.br/handle/10482/32107-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/ncrna3010011-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/880000-
Descrição: dc.descriptionNon-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp.) and in maize (Zea mays). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherMDFI-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rights© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
Palavras-chave: dc.subjectÁcido ribonucléico-
Palavras-chave: dc.subjectPlantas-
Palavras-chave: dc.subjectCana-de-açúcar-
Palavras-chave: dc.subjectMilho-
Palavras-chave: dc.subjectBiologia computacional-
Título: dc.titlePlantRNA_sniffer : a SVM-based workflow to predict long intergenic non-coding RNAs in plants-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.