A probabilistically-oriented analysis of the performance of ASR Systems for brazilian radios and TVs

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Estatística-
Autor(es): dc.contributorUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Estatística-
Autor(es): dc.contributorUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação-
Autor(es): dc.creatorAzevedo, Diego Marques de-
Autor(es): dc.creatorRodrigues, Guilherme Souza-
Autor(es): dc.creatorLadeira, Marcelo-
Data de aceite: dc.date.accessioned2024-10-23T15:11:24Z-
Data de disponibilização: dc.date.available2024-10-23T15:11:24Z-
Data de envio: dc.date.issued2023-10-11-
Data de envio: dc.date.issued2023-10-11-
Data de envio: dc.date.issued2022-11-18-
Fonte completa do material: dc.identifierhttp://repositorio2.unb.br/jspui/handle/10482/46671-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/978-3-031-21689-3_13-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/876745-
Descrição: dc.descriptionWith the use of neural network-based technologies, Automatic Speech Recognition (ASR) systems for Brazilian Portuguese (BP) have shown great progress in the last few years. Several state-of-art results were achieved by open-source end-to-end models, such as the Kaldi toolkit and the Wav2vec 2.0. Alternative commercial tools are also available, including the Google and Microsoft speech to text APIs and the Audimus System of VoiceInteraction. We analyse the relative performance of such tools – in terms of the so-called Word Error Rate (WER) – when transcribing audio recordings from Brazilian radio and TV channels. A generalized linear model (GLM) is designed to stochastically describe the relationship between some of the audio’s properties (e.g. file format and audio duration) and the resulting WER, for each method under consideration. Among other uses, such strategy enables the analysis of local performances, indicating not only which tool performs better, but when exactly it is expected to do so. This, in turn, could be used to design an optimized system composed of several transcribers. The data generated for conducting this experiment and the scripts used to produce the stochastic model are public available.-
Descrição: dc.descriptionInstituto de Ciências Exatas (IE)-
Descrição: dc.descriptionDepartamento de Ciência da Computação (IE CIC)-
Descrição: dc.descriptionDepartamento de Estatística (IE EST)-
Descrição: dc.descriptionPrograma de Pós-Graduação em Computação Aplicada, Mestrado Profissional-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Direitos: dc.rightsAcesso Restrito-
Direitos: dc.rights© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG.-
Palavras-chave: dc.subjectReconhecimento automático da voz-
Palavras-chave: dc.subjectRedes neurais (Computação)-
Palavras-chave: dc.subjectInteligência artificial-
Palavras-chave: dc.subjectÁudio - propriedades-
Título: dc.titleA probabilistically-oriented analysis of the performance of ASR Systems for brazilian radios and TVs-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.