Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Fiorucci, José Augusto | - |
Autor(es): dc.creator | Pires, Gustavo Martins Venancio | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:05:06Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:05:06Z | - |
Data de envio: dc.date.issued | 2024-07-13 | - |
Data de envio: dc.date.issued | 2024-07-13 | - |
Data de envio: dc.date.issued | 2024-07-13 | - |
Data de envio: dc.date.issued | 2023-03-13 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/48839 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/873873 | - |
Descrição: dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2023. | - |
Descrição: dc.description | Esta dissertação propõe um modelo híbrido capaz de realizar previsões de séries temporais hierárquicas com múltiplas sazonalidades. Essa metodologia híbrida consiste em utilizar um modelo de Machine Learning que possua variáveis contendo metodologias estatísticas de séries temporais para gerar previsões coesas. Essa metodologia foi aplicada no banco de dados da competição M5 - Forecasting (2020) disponibilizada pelo Kaggle, em que o objetivo era prever com maior acurácia a venda diária de 3.409 produtos distribuídos em 5 níveis de hierarquia por 28 dias. Durante o trabalho foram comparadas 5 abordagens diferentes e o modelo de Light Gradient Boosting Machine (LGBM) contendo uma variável baseada na metodologia estatística TBATS (Trigonometric seasonality, Box-Cox transformation ARMA errors, Tred and Seasonal components) chegou obter um ganho de acurácia de 27% em comparação com os modelos de LGBM sem a variável em questão. Esse modelo teria obtido a 318ª colocação na competição, ficando entre os top 6% competidores. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Estatística (IE EST) | - |
Descrição: dc.description | Programa de Pós-Graduação em Estatística | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Palavras-chave: dc.subject | Séries temporais hierárquicas | - |
Palavras-chave: dc.subject | Sazonalidade múltipla | - |
Título: dc.title | Um modelo híbrido para séries temporais hierárquicas com múltipla sazonalidade | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: