
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Santos, João Paulo dos | - |
| Autor(es): dc.creator | Vargas, Ricardo Edmundo Zamora | - |
| Data de aceite: dc.date.accessioned | 2024-10-23T15:04:18Z | - |
| Data de disponibilização: dc.date.available | 2024-10-23T15:04:18Z | - |
| Data de envio: dc.date.issued | 2015-12-20 | - |
| Data de envio: dc.date.issued | 2015-12-20 | - |
| Data de envio: dc.date.issued | 2015-12-20 | - |
| Data de envio: dc.date.issued | 2015-05-12 | - |
| Fonte completa do material: dc.identifier | http://repositorio.unb.br/handle/10482/18986 | - |
| Fonte completa do material: dc.identifier | http://dx.doi.org/10.26512/2015.5.D.18986 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/873534 | - |
| Descrição: dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2015. | - |
| Descrição: dc.description | Neste trabalho, apresentamos um estudo da geometria de Laguerre no espaço Euclidiano, apresentando a geometria de esferas e planos orientados, bem como das transformações de Laguerre. Através deste estudo, apresentamos as superfícies e a métrica de Laguerre, cujo elemento de volume é conhecido como funcional de Laguerre. Em seguida, estudamos superfícies mínimas generalizadas de Laguerre, isto é, superfícies que são pontos críticos deste funcional e que admitem pontos isolados com curvatura zero. Analogamente à representação de Weierstrass para superfícies mínimas apresentamos uma representação do tipo Weierstrass que permite descrever globalmente as superfícies mínimas de Laguerre generalizadas usando três dados: uma função meromorfa, uma forma holomorfa e uma função real harmônica. Tal representação é chamada de representação conforme e coincide com a representação de Weierstrass quando a função real harmônica é nula. | - |
| Descrição: dc.description | In this work, we present a study of Laguerre geometry in Euclidean space, presenting the geometry of oriented spheres and planes, as well as the Laguerre transformations. Through this study, we present the Laguerre surfaces and the Laguerre metric , whose volume element is known as the Laguerre functional. Then, study generalized Laguerre minimal surfaces, i.e. surfaces which are critical points of this functional and which allow isolated points with curvature zero. Similarly to the Weierstrass representation for minimal surfaces, we present a kind of Weierstrass representation that allows describe globally generalized Laguerre minimal surfaces using three data: a meromorphic function, a holomorphic form and a real harmonic function. This representation is called conformal representation and coincides with the Weierstrass representation when the harmonic real function is zero. | - |
| Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
| Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
| Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
| Formato: dc.format | application/pdf | - |
| Direitos: dc.rights | Acesso Aberto | - |
| Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
| Palavras-chave: dc.subject | Laguerre, Edmond, 1834-1886 | - |
| Palavras-chave: dc.subject | Geometria de Laguerre | - |
| Palavras-chave: dc.subject | Representação de Weierstrass | - |
| Palavras-chave: dc.subject | Métricas de Laguerre | - |
| Título: dc.title | Geometria de Laguerre e representação para superfícies mínimas generalizadas de Laguerre | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional – UNB | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: