Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ferreira, Diego Marques | - |
Autor(es): dc.creator | Ribeiro, Marcelo Oliveira | - |
Data de aceite: dc.date.accessioned | 2024-10-23T15:03:50Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T15:03:50Z | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2024-08-08 | - |
Data de envio: dc.date.issued | 2022 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/49667 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/873332 | - |
Descrição: dc.description | Tese (doutorado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2023. | - |
Descrição: dc.description | Neste trabalho investigamos a natureza aritmética de certas potências relacionadas a U-números e uma subclasse de T-números. Os primeiros dois resultados nos garantem, respectivamente, a transcendência de qualquer número algébrico elevado a um U-número e uma generalização da transcendência da constante e elevada a um U-número. Ainda relacionado a U-números, obtivemos outros dois resultados: um que dá a transcendência do produto entre um algébrico não nulo e a constante e, elevado a um U-número, o outro que nos diz quando são transcendentes números do tipo α ℓ · β ℓ 2 , em que α, β ∈ Q \ {0, 1} e ℓ é a constante de Liouville. Conseguimos provar mais dois resultados, que são técnicos, e nos dão apenas informações parcias. Um deles garante, para uma subclasse dos T-números, que chamamos de T-números especiais, a transcendência de todos os resultados que provamos serem válidos para U-números. O outro, resolve parcialmente o problema em aberto sobre a natureza aritmética de ξ ξ , quando ξ é um número de Liouville. Conseguimos tal resultado para um conjunto Gδ denso de números de Liouville, que chamamos de números de Liouville ϵ-fortes. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). | - |
Descrição: dc.description | In this work we investigate the arithmetic nature of certain powers related to Unumbers and a subclass of T-numbers. The first two ensures, respectively, results in the transcendence of any algebraic number raised to a U-number and a generalization of the transcendence of the constant e raised to a U-number. Still related to Unumbers, we get two other results: one which gives the transcendence of product between a non-zero algebraic and the constant e, raised to a U-number, and another which tells us when numbers of the type α ℓ · β ℓ 2 , where α, β ∈ Q \ {0, 1} and ℓ is the Liouville constant, are transcendentals. We were able to prove two more results, which are technical, and give us only partial information. One of them ensures, for a subclass of T-numbers, which we call special T-numbers, the transcendence of all results that we prove to be valid for U-numbers. The other partially solves the open problem on the arithmetic nature of ξ ξ , when ξ is a Liouville number. We get such a result for a Gδ dense set of Liouville numbers, which we call ϵ-strong Liouville numbers. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Matemática (IE MAT) | - |
Descrição: dc.description | Programa de Pós-Graduação em Matemática | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Álgebra | - |
Palavras-chave: dc.subject | Números de Liouville | - |
Título: dc.title | Resultados sobre a transcendência de potências relacionadas a U-números e T-números | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: